
myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 169

4444
Designing Your Own Soft Modules

Objectives

 Learn how to create circuit schematics with OrCAD

 Learn how to export a circuit from OrCAD as an EDIF netlist.

 Learn how to import an EDIF netlist into the FastChip library as a new soft module.

 Learn how to use the imported module in CSoC designs.

Why Design Your Own Soft Modules?

By this time you have created designs using soft modules and the 8032 MCU alone and
in combination. The keyboard interfaces in the previous chapter required you to
connect multiple soft modules together and then interface it to the MCU. Two problems
with this approach are:

 The soft modules are interconnected only through the names of the signal nets and
this makes it difficult to visualize the flow of information between the modules.

 A subgroup of interconnected soft modules can't be transferred from one FastChip
project to another so design re-use is difficult.

This chapter will show how these problems are solved by using OrCAD Capture.
Capture lets you draw your circuitry as an easily-understood schematic built from
standard logic symbols with interconnecting wires and buses. You can export your
circuit as a netlist file in EDIF format and then import the netlist into the library of any
FastChip project. The imported module acts just like the standard soft modules in the
FastChip library. Simply instantiating the imported module will bring all the functionality
of your circuit into your FastChip project. The rest of this chapter will show an example
of how to design a new soft module with OrCAD Capture and use it in a FastChip
project.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 170

Design 4.1 - PS/2 Keyboard Interface Module

In Chapter 3 you built an interface from soft modules that received a serial bit stream
from a keyboard and interrupted the 8032 MCU when a complete scan code was
available. Now you will rebuild that interface as a single soft module using OrCAD
Capture.

The schematic for the keyboard interface circuit is repeated in Figure 19. Falling edges
of the ps2_clock signal strobe keyboard scan code bits from ps2_data into the
ps2_data_sreg shift register. Each rising edge of ps2_clock sets the rcv_active flip-
flop which indicates the receiver circuit is gathering scan code bits. The bit_timer
counter is also cleared whenever ps2_clock is low. Once ps2_clock stays high at the
end of the scan code transmission, the 25 MHz BusClock will have sufficient time to
increment the counter until bit bit_timer[11] goes high. Once rcv_active and
bit_time[11] are both set, this drives the rcv_int_comb signal high which 1) clears the
rcv_active flip-flop indicating the receiver is no longer active, and 2) sets the rcv_int
flip-flop that strobes the scan code from the shift register into the rcvData register and
sends an interrupt (INTR0) to the 8032 MCU. When the MCU responds to this interrupt,
it reads the scan code from the logical address of the rcvData register. The presence
of the rcvData register address on the CSI address bus triggers a selector. The RdSel
signal goes high and this gates the scan code onto the CSI data bus while
simultaneously clearing the interrupt from the rcv_int flip-flop.

ps2_clock ps2_clock_b

BusClock

GBuf0

ps2_clock_inv

ps2_data

INTR0

CSI AddressCSI Data

RdSel

rcv_int_comb

rcv_int

rcv_int_logic

1

1

rcv_active

s[
0]

s[
4]

s[
1]

s[
2]

s[
3]

s[
5]

s[
6]

s[
7]

s[
8]

s[
9]

bi
t_

tim
e[

10
]

bi
t_

tim
e[

11
]

bi
t_

tim
e[

8]
bi

t_
tim

e[
7]

bi
t_

tim
e[

6]
bi

t_
tim

e[
5]

bi
t_

tim
e[

9]

bi
t_

tim
e[

4]
bi

t_
tim

e[
3]

bi
t_

tim
e[

2]
bi

t_
tim

e[
1]

bi
t_

tim
e[

0]

D
clr

Q

D
clr

Q

ps2_data_sreg

rcvData

Selector

bit_timerasync

Figure 19: Schematic of a PS/2 keyboard interface circuit that uses interrupts.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 171

Starting the Design

You can start this design by loading the Chap31 design into FastChip. Then delete all
the soft modules in the keyboard interface and save the project under the name
Chap41.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 172

Starting a Project with OrCAD Capture

Now that you have the FastChip project started, create a folder named orcad in the
Chap41 FastChip project folder. Your OrCAD schematic files will be stored there. Then

click on the icon to start the OrCAD Capture software.

In the OrCAD Capture window, select File⇒New⇒Project… to start a new Capture
project.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 173

In the New Project window that appears, click on the Schematic radio button since your
design will be done as a schematic. In the Name box, type ps2port as the name of
your keyboard interface module. Then use the Browse button to select the orcad folder
under the Chap41 project folder as the location for the Capture project files. Then click
on OK to accept these settings.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 174

Now the OrCAD Capture window will contain two subwindows:

ps2port.opj: This window shows the organization of the entities in this project. The File
and Hierarchy tabs let you select whether you want to view the organization
of the project files or the circuitry components.

SCHEMATIC1:PAGE1: You will draw your schematic in this window.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 175

Now you need a library of circuit elements that you can interconnect to build your circuit.
Triscend supplies several libraries of components that are specially designed for the
CSL matrix of the CSoC. You should only use components found in the Triscend
libraries. To add these libraries to your OrCAD project, right-click on the Library folder in
the ps2port.opj window as shown below. Then select Add File in the pop-up menu that
appears.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 176

In the Add Files to Project Folder - Library window, steer your way through the folder
hierarchy shown below to find the Triscend schematic libraries.

Select all three of the Triscend schematic libraries in the folder and click on Open.

Once you click on Open, you may receive the message shown below. The Triscend
libraries are stored in a format for version 7.2 of OrCAD Capture, but you have version
9.1 of Capture. You can elect to convert the Triscend libraries to version 9.1 or not. (I
left all my Triscend libraries in version 7.2 format.)

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 177

Now the Triscend libraries should be listed under the Library folder in the ps2port.opj
window.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 178

Drawing a Schematic with OrCAD capture

With the Triscend libraries in place, you can start drawing your keyboard interface
schematic. Click in the SCHEMATIC1 window and the tools for entering a schematic
appear along the right-edge of the OrCAD Capture window.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 179

To start, you will use the part placement tool to place parts from the Triscend libraries
into your schematic. Clicking on brings up the Place Part window. You can
highlight one or more of the entries in the Libraries area and the parts contained in the
highlighted libraries are listed in the Part area. When you highlight one of the entries in
the part list (a D flip-flop in this case), a small symbol for the part will appear. Once you
find the part you want, click on OK.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 180

Now the part symbol is attached to the cursor as you move it within the SCHEMATIC1
window. Clicking with the mouse drops a copy of the part symbol into the window.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 181

The part symbol remains attached to your cursor even after you click the mouse. This
lets you add several independent copies of a part without having to go back to the
Place Part window each time.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 182

When you want to stop adding a particular part to your schematic, you can right-click
with the mouse to make the following pop-up menu appear. Select End Mode and the
part symbol will disappear from the cursor. You can also get the same effect by
pressing the ESC key.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 183

Each part that you drop into a schematic is given a default name (DFF_1 and DFF_2 in
this example). You can give a part a more descriptive name by double-clicking on the
part name. Then just type the part name you want in the Value field of the Display
Properties window that appears.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 184

Once you add the parts to your schematic, you can rearrange them by clicking on the
 tool and then click-and-drag the symbol for the part you want to move. Drag it where

you want and then release it. If you drag one part close to another, the pins on each
part will be highlighted. This indicates a connection will be established if you drop the
part at that location. This is a quick way to attach parts to build larger functions. For
example, a byte-wide register can be built by concatenating eight D flip-flops together.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 185

However, in most cases you will connect parts using the wiring tool. Click on the tool
and then click on a pin of one of the part symbols. As you move the mouse, a wire will
extend from the pin. Click the mouse each time you want to change the direction of the
wire.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 186

Once your wire gets close enough, a pin will be highlighted. Clicking the mouse will
terminate the wire on that pin and establish a net connection between the two parts.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 187

You can also attach a wire to a pin without terminating it at another pin. Just right-click
while drawing the wire and select End Wire on the pop-up menu as shown below.

You can assign an alias to any wire by clicking on the tool. Type the name you want
to assign to the net in the Alias box of the Place Net Alias window that appears. Then
click OK.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 188

The new name for the wire will be attached to the cursor. Then just click your mouse on
the wire you want to name.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 189

This attaches the alias to the net.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 190

You can connect pins by attaching wires to each of them and assigning the same alias
to each wire as shown below. This lets you avoid cluttering your schematic with many
crossing wires.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 191

You can place parts and connect them with wires, but you also need a way to pass
signals in and out of your circuit if it is going to serve as a module in a larger design.
The module I/O is performed by ports. To add a port, click on the tool. The Place
Hierarchical Port window will appear with a list of the various ports you can drop into
your schematic. Highlight one of the ports (I'm partial to PORTRIGHT but it really
doesn't make much difference) and type a name for the port in the Name field. Then
click on OK.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 192

Now the port symbol will be attached to your cursor. Click the mouse to drop the port
into the schematic.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 193

Next you need to set the direction of the I/O port. Even though the symbol may appear
to be that of an input, that doesn't really mean it is. You should always explicitly set the
direction for the port. Double-click the port symbol to bring up the Property Editor
window for this port instance. Select the direction of the port from the drop-down menu
under the Type heading. In this case, the port brings the clock signal from the PS/2 port
into the circuit, so the Input type is selected. I generally use only ports of type Input and
Output when designing a module for a Triscend CSoC. If I need a bi-directional port I will
add two ports - one for input and one for output.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 194

After setting the port direction, click on the Apply button and close the window. Now you
can use wires to connect the port to the pins of other parts in your schematic.

This completes my short introduction to the tools for entering a schematic. OrCAD
Capture has many features and shortcuts that I haven't covered, so you should read the
documentation if you want to learn more.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 195

The one-page Capture schematic for the keyboard interface circuit is shown below. It
follows the structure and naming of the circuit in Figure 19. Each section of the circuit
will be shown in more detail.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 196

A 10-bit shift register gathers the scan code bits from the ps2_data input port as pulses
are applied to the ps2_clock port. The eight scan code bits are clocked into the
rcvData register when the rcv_int flip-flop is set.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 197

The output of the rcvData register is gated onto the CSI data bus through the
DR7_OE_1 component when its EN input is driven high.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 198

The EN input of the DR7_OE_1 component is driven by the RDSEL output of the
SELECTOR_1 component. In this case, SELECTOR_1 responds to a single address in
the 8032 SFR address space when this address appears on the CSI address bus. This
is expressed in the schematic by attaching the SIZE1 and P8032 SFR components to
the SELECTOR component. The actual SFR address is not specified. Instead, a
SYMBOLIC component is attached to the SELECTOR through a wire with the alias
rcvData. The FastChip software will replace the symbolic address with a logical
address in the SFR space of the 8032. The combination of the DR7_OE, SELECTOR,
SIZE, SFR, and SYMBOLIC parts replaces the function of the single Status Register
soft module used in the keyboard interface of the previous chapter.

The bit_timer is built from an eight-bit up-counter with no carry input (CUP8B) coupled
to a four-bit up-counter with a carry input (CUP4BCI). The carry output of
bit_timer_low drives the carry input of bit_timer_high. The counters are clocked by
the main clock of the CSoC by using the BUSCLK component. The counters are
cleared whenever the CLR input goes high (i.e., whenever the ps2_clock signal is low).

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 199

At the end of a keyboard scan code transmission, the most-significant bit of the counter
(bit_timer11) goes high and is logically ANDed with the high output of the rcv_active
flip-flop. This clears the rcv_active flip-flop and sets the rcv_int flip-flop. The rising
edge on the output of rcv_int clocks the ps2_data_sreg contents into the rcvData
register. The rcv_int output also exits the keyboard interface through the INTR port.
The value on the INTR port alerts the larger system when a keyboard scan code has
been received.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 200

Exporting the Netlist for a Schematic

After placing all the parts and adding the wiring in the SCHEMATIC1 window, you can
return to the ps2port.opj window and highlight the .\ps2port.dsn entry. This causes the
schematic drawing tools to disappear from the right-edge of the Capture window and it
enables the menu functions for exporting the schematic netlist to FastChip.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 201

To begin exporting the keyboard interface netlist, click on the Tools⇒Create Netlist… menu
item as shown below.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 202

Click on the EDIF 2 0 0 tab in the Create Netlist window that appears. FastChip imports
modules from EDIF netlists. The only option box that should be checked is the one
which outputs pin names instead of numbers in the EDIF file. Then use the Browse
button to select the orcad folder under the Chap41 project folder. The keyboard interface
netlist will be stored in the PS2PORT.EDN EDIF file in this folder. Click on OK to begin the
export process.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 203

Once the netlist has been exported as an EDIF file, you can see it listed in the File tab of
the ps2port.opj window under the Outputs folder.

Importing a Netlist into a FastChip Project

To begin importing the keyboard interface to your FastChip project, click on the

 icon in the FastChip project window toolbar. The Import EDIF module to
the Imported Library window appears.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 204

Click on the Browse button and steer your way into the orcad folder under the Chap41
project folder.

You should highlight the PS2PORT.EDN EDIF file and click on the Open button.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 205

Now the path to the EDIF file should be listed in the File Name box and the Module Name
field has been automatically updated with the name of your OrCAD project.

Once you click on OK, the EDIF file import process begins. The progress is reported in
the lower right-hand corner of the FastChip project window.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 206

You should receive the following status message after the import process completes.
Click on OK to proceed.

Now you should see a new entry labeled Imported in the Triscend Library area. Expanding
this entry shows that the keyboard interface circuit has been added to the library.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 207

Using the Imported Module

You can drag your newly-imported PS2PORT module into the Configurable System Logic
area just like any other soft module.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 208

Then click on the PS2PORT_A module to make the Module - PS2PORT window
appear. The input and output ports in the original schematic are arranged along the left
and right side of the module block, respectively. The port names in the schematic are
also used as the default labels for the input and output nets.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 209

You can rename the module to PS2PORT. The PS2_DATA input of the keyboard
interface should be connected to the ps2_data input pin of the FastChip project. The
keyboard clock signal arrives through the ps2_clock input pin and this drives the
GBuf0 global clock buffer. The output of GBuf0 drives the clock input of the keyboard
interface module. The output which indicates the presence of a keyboard scan code is
connected to interrupt signal 0 (INTR0) of the 8032 MCU.

Note that some of the keyboard interface module I/O is not explicitly visible. The
BusClock is implicitly input to the keyboard module by the inclusion of the BUSCLK
component in the schematic. The interface to the CSI address and data buses is also
implicitly defined by the use of the DR7_OE, SELECTOR, SIZE, SFR, and SYMBOLIC
components.

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 210

After clicking OK in the Module - PS2PORT window, your FastChip project window
should appear as follows.

The modules and their interconnections have been instantiated. The pin assignments
should already be set as shown in Table 13.

Table 13: Pin assignments and functions for the keyboard interface design.

Signal Pin CSoC Board Resource

ps2_clock 47 PS/2 clock input

ps2_data 51 PS/2 data input

LED.0 35 LED digit segment A

LED.1 39 LED digit segment B

LED.2 43 LED digit segment C

LED.3 41 LED digit segment D

LED.4 40 LED digit segment E

LED.5 34 LED digit segment F

LED.6 36 LED digit segment G

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 211

Press the Generate icon on the toolbar and FastChip will create the chap41.h header file
(Listing 9). Now you can check how the FastChip software handled the SYMBOLIC
address component attached to the SELECTOR. Note that on line 34 the register which
holds the scan code is declared to be of type sfr. So it was placed in the special
function register address space of the 8032 as you specified by using the SFR
component in your schematic. The name of the register was formed by concatenating
the module name (PS2PORT) with the alias for the net that connects the SYMBOLIC
component to the SELECTOR component (RCVDATA).

Listing 9: Top of the header file generated by the FastChip software for the
keyboard interface.

// Generated 5/28/00 9:12 AM By FastChip Version 1999 Build 301
2

///3
//4
// ----------------------------------5
// ------ GENERATED CODE --------6
// ----------------------------------7
// The code in this header file was generated automatically for your8
// project by Triscend FastChip. Please DO NOT EDIT this header file.9
// It will be overwritten the next time FastChip generates code for10
// your project.11
//12
///13

14
//======== Required symbol and macro definitions ========15

16
#ifdef PROTOTYPE_ONLY17
define CHAR_XDATA(name,location) extern volatile unsigned char xdata name;18
define CHAR_ARRAY_XDATA(name,location,size) extern volatile unsigned char19
xdata name[size];20
#else21
define CHAR_XDATA(name,location) volatile unsigned char xdata name _at_22
location;23
define CHAR_ARRAY_XDATA(name,location,size) volatile unsigned char xdata24
name[size] _at_ location;25
#endif26

27
//========= BEGIN SOFT MODULE REGISTER DECLARATIONS ======28

29
//-------------------------------- Module ledPort30
 CHAR_XDATA (ledPort,0xefff)31

32
//-------------------------------- Module PS2PORT33
 sfr PS2PORT_RCVDATA = 0x9a;34

35
//========== END SOFT MODULE REGISTER DECLARATIONS =======36

The next step is to write your application code. Create a keil folder within your Chap41
FastChip project folder. Then start the Keil IDE and add the C code in Listing 10 to the
chap41 Keil project. The main routine (lines 3-7) just initializes the 8032 MCU and
enters an infinite-loop. All the work is actually done in the displayPs2Data interrupt
subroutine (lines 28-47). This subroutine is called when the keyboard interface

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 212

generates an INT0 interrupt (interrupt identifier 0). The interrupt subroutine reads the
keyboard scan code from the PS2PORT_RCVDATA register on line 33 and this also
clears the interrupt flag in the keyboard interface. Then the scan codes in the table
defined on lines 13–26 are searched. If a matching scan code is found in the table, the
subroutine writes the associated LED segment activation pattern to the ledPort register.
This displays the digit for the key that was pressed. (The table only has the scan codes
for the digits 0–9.) If the received scan code can't be found in the table, the subroutine
displays an E on the LED digit.

Listing 10: Keyboard interface interrupt-handling code.
#include "..\Chap41.h"1

2
main()3
{4

Chap41_INIT();5
while(1);6

}7
8
9

#define ERROR 0x79;10
11

// translate keyboard scan codes to LED segment activations12
typedef struct{ unsigned char ps2Data, led; } ps2XlateEntry;13
ps2XlateEntry ps2XlateTbl[] =14
{15

{ 0x16, 0x06 }, // "1"16
{ 0x1E, 0x5B }, // "2"17
{ 0x26, 0x4F }, // "3"18
{ 0x25, 0x66 }, // "4"19
{ 0x2E, 0x6D }, // "5"20
{ 0x36, 0x7D }, // "6"21
{ 0x3D, 0x07 }, // "7"22
{ 0x3E, 0x7F }, // "8"23
{ 0x46, 0x6F }, // "9"24
{ 0x45, 0x3F } // "0"25

};26
27

static void displayPs2Data() interrupt 0 using 028
{29

unsigned int i;30
unsigned char c;31

32
c = PS2PORT_RCVDATA; // get the scan code33

// (also clears interrupt)34
35

// search the translation table for the scan code36
for(i=0; i<sizeof(ps2XlateTbl)/sizeof(ps2XlateEntry); i++)37

myCSoC Designing Your Own Soft Modules

©2000 by XESS Corp. 213

if(ps2XlateTbl[i].ps2Data == c)38
{ // found a matching scan code in the table so39

 // display the digit on the LED40
ledPort = ps2XlateTbl[i].led;41
 return;42
 }43
 44
// no matching scan code was found, so display "E"45
ledPort = ERROR;46
}47

Once you set the compiler and linker options as you did in the previous chapters, you
can compile and link the Chap41 Keil project. Then re-enter the FastChip project
window and bind your design. Download the keyboard interface circuitry and the 8032
program in the Chap41.HEX file to your CSoC Board.

Finally, use dScope to establish a debugging link to the CSoC Board and then reset and
execute the application program. At this point, you should be able to type on the
numeric keys of a keyboard attached to the PS/2 port of your CSoC Board and see the
numbers appear on the LED digit.

