
myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 127

window will show the number of transmission errors that occurred during the one-
second break in the loopback path.

Does this number make sense? The 8032 MCU is running at 25 MHz and the UART is
in mode 2 so it transmits a single bit every 64 clock cycles = 2.56 µs. Each byte
transmission consists of eleven bits (a start bit, eight data bits, one programmable data
bit, and a stop bit) over an interval of 28.2 µs. So a one-second interruption in the
loopback path will cause 1 s / 28.2 µs = 35,500 errors. The Watch window reports
errCnt = 0x7555 = 30,037 which is pretty close given that you have to manually open
and close the DIP switch.

Design 2.4 - 8032 MCU Memory Tester

Your last MCU-based design in this chapter will test the external SRAM chip on the
CSoC Board. It will use the same hardware configuration as the first design (Figure 11).
The MCU will determine the segment of SRAM to test by reading the DIP switch
settings through port P0. Then the MCU will write a pseudo-random series of bytes to
the SRAM segment and read it back to see if it was stored correctly. Finally, the result
of the test is displayed on the LED digit.

Address Translation in the Triscend CSoC

In order to understand how the SRAM testing program works, you need to know how
the CSoC assists the 8032 MCU with memory accesses. The CSoC has a 32-bit CSI
address bus that is used to selectively access various components of the internal
circuitry (registers in the CSL, DMA controllers, etc.) or external devices (e.g., memory
devices connected to the MIU). But the 8032 MCU uses 16-bit addresses. In order for
the MCU to be able to access all the circuitry inside and outside the CSoC, address
mappers are provided that translate the 16-bit logical addresses into full 32-bit physical
addresses.

An address mapper uses three parameters to control the translation process:

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 128

Block Size: This parameter specifies the size of the contiguous range of addresses on
which the mapper performs translations. For the Triscend CSoC, the block
size is always a power of two in the range from 28 = 256 up to 216 = 65536
(which is the maximum range of the 8032 logical addresses). The block size
exponent is stored in a five-bit field with permissible values in the range
[8,16].

Zone Source Address: The address mapper is activated when the logical address from
the 8032 MCU matches the zone source address. For the Triscend CSoC
with a block size of 2N, only the upper 16-N bits of the logical and zone source
addresses are compared. For example, if the block size is 214 = 16384 then
only the upper two bits of the addresses are used in the comparison. If the
upper two bits of the zone source address are 10, then the address mapper
will trigger for any logical address in the range [32768, 49151]. Because the
smallest block size is 28, the address comparison uses a maximum of 16-8 =
8 bits so the zone source address is stored in a single byte.

Target Address: When the address mapper triggers, this parameter fills in the upper
bits of the physical address. For the Triscend CSoC with a block size of 2N,
the physical address is formed by concatenating the upper 32-N bits of the
target address to the lower N bits of the logical address. For example, if the
block size is 214 then the target address fills in the upper 32-14 = 18 bits of
the 32-bit physical address. Because the smallest block size is 28, the target
address has to provide a maximum of 32-8 = 24 physical address bits so the
target address is stored in three bytes.

Once the 32-bit physical address is generated, how does the CSoC know whether this
address should be used to address a register in the CSL, a byte in the internal SRAM,
or a byte in external SRAM (via the MIU)? The CSoC is hardwired such that different
functional areas are selected by various ranges of physical addresses. The CSoC uses
bits 16 through 23 (the second most-significant byte) of the physical address to select
the functional areas as listed in Table 9.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 129

Table 9: CSoC functions and their associated physical address ranges.

Physical Address Bits
A23…A16

CSoC Function

0x00 8032 MCU internal ROM

0x01 Internal 16 KByte SRAM

0x02 System configuration registers (CRU)

0x03 - 0x07 Debugger resources

0x10 - 0x7F CSL soft modules

0x80 - 0xFF External memory (MIU)

What does the CSoC do with the most-significant byte of the physical address? Almost
nothing. You can use it for debugging purposes by loading it with bit patterns that
appear on the CSoC address lines when the associated address mapper is triggered.
Given that you are reading through a beginner's tutorial, you probably won't use this
feature for a while.

How many address mappers does the CSoC have in it? There are three code mappers
(C0, C1, and C2) that handle the 8032 MCU instruction addresses. The code mappers
are prioritized so only a single mapper is triggered by any logical address. Then there
are six data mappers (D0 – D5) that translate data addresses. The data mappers are
also prioritized. Finally, there is a single mapper for SFR addresses. These address
mappers and their priorities are listed in Table 10.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 130

Table 10: Code, data, and SFR address mappers and their priorities.

Address Mapper Priority

C0 3 (lowest)

C1 2code
mappers

C2 1 (highest)

D0 6 (lowest)

D1 5

D2 4

D4 3

D5 2

data
mappers

D3 1 (highest)

SFR
mapper

SFR N/A

Testing the CSoC Board Memory

Now it's time to take your abstract knowledge of the CSoC address mappers and put it
to use in a concrete application: testing the memory on your CSoC Board. Start by
opening the Chap21 FastChip project and saving it as a project named Chap24. Then
click on the Generate icon in the toolbar to create the Chap24.h header file.

Next create a keil folder within the Chap24 project folder. Use the Keil IDE to create a
chap24 project in the keil folder that includes the source code of Listing 5.

The first subroutine in Listing 5 (lines 5–13) is called whenever the watchdog timer in
the 8032 MCU times out. Normally the watchdog timer is used to reset the MCU into a
known state if the application code fails to periodically refresh the timer, but here we use
the watchdog as a simple source of periodic interrupts. The watchdog interrupt
identifier is 12 and the interrupt subroutine uses register bank 3. The first action of the
ledFlash subroutine is to write a bit pattern to the LED digit (line 8) and then rotate the
pattern one bit position to the left (line 10). Then the watchdog timer interrupt flag is
cleared (line 11). The net result is that the ledFlash interrupt subroutine will
sequentially light the segments of the LED digit as the watchdog timer generates a
series of interrupts. You will use this as a visual signal to indicate the memory test is in
progress.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 131

The genRand subroutine on lines 15–26 implements a simple linear-feedback shift
register (LFSR). The LFSR starts from a seed value and generates a series of 255
distinct values before it repeats. Several bits from the current seed value are exclusive-
ORed together and the result is shifted into the most-significant bit of the seed to form
the next value in the series (lines 20–24). This value is returned to the calling routine on
line 25 and it also becomes the seed for the next value in the series.

Lines 30–61 define the memory testing subroutine testMemRange. It accepts two
parameters: the lower and upper bounds on the section of memory it will test. The
subroutine writes the values from the genRand subroutine into the memory range on
lines 41–45. Then the contents of the memory range are read back and compared with
the values from genRand on lines 49–56. (On line 49 the genRand subroutine is re-
initialized with the same seed used for the memory writing loop so it generates the exact
same series of values.) The memOK flag is cleared if the value read from memory
doesn't match the output from the genRand subroutine. This indicates an error in the
operation of the memory. Otherwise the memOK flag remains set which indicates the
memory appears to be operating correctly. The value of the memOK flag is returned to
the calling routine on line 60.

The testMemRange subroutine also enables the watchdog timer before the memory
test runs (lines 36–38) and disables the watchdog timer after the test is completed (line
59). Thus, the LED will flash only during the memory test.

The main routine reads the DIP switch settings and uses them to set-up the data
mappers on lines 77–89. Then the testMemRange subroutine is used to test the
selected memory region on lines 92 and 93 and display an 0 or an E on the LED digit if
the memory passes or fails, respectively.

Line 77 disables data mappers 2, 4, and 5. (The definitions of all the address mapper
control registers are stored in the chap24.h header file.) Data mappers D3 and D0 are
always enabled. The remaining data mapper, D1, is controlled by the DIP switches.
The functions of the DIP switches in this application are listed in Table 11. DIP switches
#1, #2, and #3 set-up the values of target address bits A14, A15, and A16, respectively.
DIP switches #4, #5, and #6 are used to set the size of the block of memory that will be
tested. And DIP switch #7 is used to enable or disable the D3 data mapper. These
values are read from the DIP switch through the P0 port on lines 80–82. Note that the
block size exponent value is limited to a value from 0 to 7 (it's only three bits), so the
value is increased by nine on line 81. This lets the program test memory ranges from 29

= 512 bytes up to 216 = 65536 bytes.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 132

Table 11: Functions of the DIP switches in the memory test application.

DIP Switch Function

#1, #2, #3 Target address bits A14, A15, A16

#4, #5, #6 Block size exponent

#7 Data mapper enable

The DIP switch values are written into the data mapper control registers on lines 85–89.
The enable bit is written to bit 6 of the DMAP1_CTL register and the block size exponent
is written to the lower five bits of this register on line 85.

The target address for the data mapper is stored in registers DMAP1_TAR_0 (address
bits A15–A8), DMAP1_TAR_1 (address bits A23–A16), and DMAP1_TAR_2 (address bits
A31–A24). DIP switches #1 and #2 set the values of A14 and A15 in the upper two bits of
DMAP1_TAR_0, while DIP switch #3 sets the value of A16 in the least significant bit of
DMAP1_TAR_1. The most significant bit of DMAP1_TAR_1 (A23) is set so that the data
mapper will access the external SRAM on the CSoC Board through the MIU (see the
last entry of Table 9). Finally, the upper byte of the target address isn't used for
anything so it is just set to zero.

The zone source address is cleared on line 89 so the data mapper will respond to
logical addresses from the MCU whose upper bits are all zero.

Listing 5: C application code for the CSoC memory testing program.
#include "..\Chap24.h"1

2
// interrupt routine called whenever watchdog times out3
// that flashes the LED digit4
unsigned char ledPattern = 1; // LED segment flash5
static void ledFlash(void) interrupt 12 using 36
{7

ledPort = ledPattern; // update LED8
// now rotate the pattern written to the LED9
ledPattern = (ledPattern<<1) | (ledPattern>>7);10
TA = 0xAA; TA = 0x55; WDIF = 0; // reset watchdog int11

}12
13

// routine to generate a random number in [1..255]14
unsigned char seed = 1; // random number seed15
unsigned char genRand()16
{17

unsigned char randbit;18
randbit = 0;19
if(seed&1) randbit ^= 0x80;20

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 133

if(seed&4) randbit ^= 0x80;21
if(seed&8) randbit ^= 0x80;22
if(seed&16) randbit ^= 0x80;23
seed = (seed>>1) | randbit;24
return seed; // return the random number25

}26
27

// routine to test memory by writing random numbers28
// to memory and then reading them back and comparing.29
typedef volatile unsigned char xdata xdataChar;30
unsigned char testMemRange(xdataChar* lo, xdataChar* hi)31
{32

xdataChar* p; // pointer to memory space being tested33
unsigned char memOK; // memory test result flag34

35
ledPattern = 0x01; // initialize LED flash pattern36
CKCON = 0x00; // watchdog timeout every 2^17 clocks37
EWDI = 1; // enable watchdog timer38

39
// write random number sequence to memory40
seed = 1; // seed the random number generator41
p=lo; // start writing at lower address42
do43

*p = genRand(); // store random number in memory44
 while(p++ != hi); // write until upper address is reached45

46
 // now read the memory range and compare against the47
 // output of the re-initialized random number generator48

seed = 1; // init the random generator with the same seed49
memOK = 1; // start off assuming the memory is OK50
p=lo; // start reading at lower address51
do52

// memOK stays true as long as the contents read from53
 // memory match the output from the random generator54

memOK = memOK && (*p == genRand());55
while((p++ != hi) && memOK); // check entire memory56

// range or until an error is seen57
 58
EWDI = 0; // disable watchdog59
return memOK; // return result of memory test60

}61
62
63

#define MEM_OK 0x3F // bit pattern to display 'O' on LED64
#define MEM_ERR 0x79 // bit pattern to display 'E' on LED65

66
main()67

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 134

1 1

0

Enable
Block Size
A14 - A16

2 3 4 5 6 7 8

{68
unsigned char enable, blockSize, targetAddr;69
unsigned int hi;70

71
Chap24_INIT();72

73
EA = 1; // enable interrupts74

75
// disable data mappers 2, 4, and 576
DMAP2_CTL = DMAP4_CTL = DMAP5_CTL = 0;77

78
// get the memory test settings from DIP switches 1-779
enable = (P0>>6) & 0x1;80
blockSize = ((P0>>3) & 0x7) + 9;81
targetAddr = P0 & 0x7;82

83
// set-up data mapper D184
DMAP1_CTL = (enable<<5) | blockSize;85
DMAP1_TAR_0 = targetAddr<<6;86
DMAP1_TAR_1 = 0x80 | ((targetAddr>>2) & 0x01);87
DMAP1_TAR_2 = 0x00;88
DMAP1_SRC = 0;89

90
// test the memory range [0,hi] and report result on LED91
hi = (1<<blockSize) - 1;92
ledPort = testMemRange(0,hi) ? MEM_OK:MEM_ERR;93
while(1) ; // loop forever94

}95

Once the code in Listing 5 is compiled and linked, you can use FastChip to bind and
download the hardware and application code for the CSoC. Then use dScope to set-up
a debugging link to your CSoC Board and reset the MCU. Set the DIP switches, click
on Go!, and you should see the LED digit flash and then display either a 0 or E. Various
DIP switch settings and the memory test results are shown in the following paragraphs.

DIP switch #7 is set to one so data mapper D1 is enabled.
The block size is set to 26+9 = 32768 and the program tests
logical addresses 0x0000 through 0x7FFF. The resulting
physical address range put out by the data mapper is
[0x810000, 0x817FFF]. The external 128 KByte SRAM on
the CSoC Board is only connected to the lower seventeen
bits of the physical address, so SRAM addresses during the
test are in the range [0x10000, 0x17FFF]. Provided the
SRAM chip is functioning properly, the memory test should

pass and an 0 will be displayed.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 135

1 1

0

Enable
Block Size
A14 - A16

2 3 4 5 6 7 8

1 1

0

Enable
Block Size
A14 - A16

2 3 4 5 6 7 8

1 1

0

Enable
Block Size
A14 - A16

2 3 4 5 6 7 8

1 1

0

Enable
Block Size
A14 - A16

2 3 4 5 6 7 8

Everything is identical to the previous test except the resulting physical address range
put out by the data mapper is moved up to the range
[0x818000, 0x81FFFF]. This moves the SRAM addresses
during the test to the range [0x18000, 0x1FFFF]. Once
again this is in the functioning address range for the SRAM
chip, so the memory test should pass and an 0 will be
displayed.

Everything is identical to the previous test except data
mapper D1 is disabled. This means the next active data
mapper in the priority list, D0, will trigger on the logical
addresses in the range [0x0000, 0x7FFF]. D0 maps logical
addresses into the physical address range of the internal
SRAM in the TE505 CSoC. The 16 KByte internal SRAM
cannot pass a 32 KByte memory test, so at the conclusion
an E is displayed on the LED digit.

Everything is identical to the previous test except the block
size is set to 25+9 = 16384 so the program tests logical
addresses 0x0000 through 0x3FFF. Now the address range
checked by the program fits within the 16 KByte internal
SRAM, so at the conclusion an 0 is displayed on the LED
digit.

Now the D1 data mapper is enabled again and the block
size is set to 27+9 = 65536. The program tests logical
addresses 0x0000 through 0xFFFF. D1 translates logical
addresses 0x0000 through 0xFEFF to physical addresses
for the external SRAM. But logical addresses in the range
[0xFF00, 0xFFFF] trigger data mapper D3. D3 is the data
mapper with the highest priority and it takes precedence
over D1. D3 generates physical addresses that access the
configuration registers (CRU), so the memory test program

starts writing test data into these registers. This is not good. The configuration
registers include all the control registers for the code mappers so rewriting these
registers will prevent the MCU from accessing the memory where the program
instructions are stored. As a result, the program stops running in mid-test and the LED

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 136

1 1

0

Enable
Block Size
A14 - A16

2 3 4 5 6 7 8

1 1

0

Enable
Block Size
A14 - A16

2 3 4 5 6 7 8

digit stops with a single segment illuminated. You will have to use FastChip to
download the hardware configuration and application program into the CSoC before it
operates correctly again.

The block size is reduced to 26+9 = 32768 so the program
tests logical addresses 0x0000 through 0x7FFF. The target
address bits are changed such that the resulting physical
address range put out by data mapper D3 is [0x808000,
0x80FFFF]. The external 128 KByte SRAM on the CSoC
Board is only connected to the lower seventeen bits of the
physical address, so SRAM addresses during the test are in
the range [0x08000, 0x0FFFF]. This is in the valid address
range for the external SRAM chip, so the memory test

should pass and an 0 will be displayed.

Everything is identical to the previous test except the
resulting physical address range put out by the data mapper
is moved down to the range [0x800000, 0x807FFF]. The
address to the external SRAM is in the range [0x00000,
0x07FFF]. But the instructions for the program are stored in
this section of the SRAM so the memory tester writes over
its own program. As a result, the program stops running
before the interrupt subroutine can even flash the LED digit.
So the LED digit will show whatever it was showing when

the program was started. You will have to use FastChip to download the hardware
configuration and application program into the CSoC before it operates correctly again.

