
myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 72

2222
Programming the 8032 MCU Core

Objectives

 Become familiar with the 8032 microcontroller core on the Triscend CSoC.

 Learn how to instantiate and use 8032 I/O ports.

 Learn how to use some of the dedicated peripherals of the 8032.

 Learn how to use the Keil software development environment to write C programs.

 Learn how to create interrupt-driven programs.

 Learn how the Triscend CSoC handles code and data memory spaces.

Microcontroller Resources in the CSoC

Your introduction to the Triscend CSoC continues with an exploration of the built-in
8032 microcontroller core. The areas of the CSoC you will use are:

 the 8032 microcontroller unit (MCU) with its dedicated peripherals,

 the byte-wide system SRAM,

 the memory interface unit (MIU),

 the address mappers,

 the JTAG interface,

 the hardware breakpoint unit.

These areas are highlighted in Figure 11.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 73

Clock
Control

Configurable
System Logic

(CSL)
Matrix

Selector

Selector
Selector
Selector
Selector
Selector

PIO

PIO
PIO
PIO
PIO
PIO
PIO
PIO

Power-On
Reset

Power
Mgmt.

Address Bus

D
ata BusBus

Arbiter

Two-Channel
DMA Controller

JTAG
Interface

Address
Mappers

Hardware
Breakpoint Unit

Byte-wide
System RAM

Memory
Interface Unit

8032 MCU
CPU

UART

Timer0
Timer1
Timer2

Watchdog
Timer

256x8
RAM

Interrupt
Unit

Data Address

Configurable System
Interconnect Bus

Figure 11: Areas of the Triscend CSoC used in the designs in this chapter.

The 8032 Microcontroller Unit

The Triscend CSoC contains an enhanced version of the industry-standard 8051 MCU
architecture. The 8051 architecture has been described in hundreds of books over the
past twenty years, so I won't try to replicate that body of work here. I will list the
features of the enhanced 8032 MCU in the CSoC:

Turbo CPU: The standard 8051 uses twelve clock cycles per instruction cycle, but the
8032 MCU in the CSoC uses only four clock cycles. The 8032 MCU also has
two data-pointer registers versus the single data-pointer in the original 8051.

SRAM: The 8032 MCU contains 256-bytes of SRAM for use as scratch-pad storage and
to hold the program stack.

UART: A universal asynchronous receiver/transmitter (UART) is built into the MCU for
serial data communications. The 8032 UART offers automatic address
recognition and frame error detection in addition to the standard features of
the original 8051 UART.

Timers: The 8032 MCU has three programmable timers which are used to generate
pulse-trains, periodically interrupt the MCU, and set the bit rate of the UART.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 74

Watchdog timer: The watchdog timer resets the 8032 MCU to a known state unless
the MCU regularly clears the watchdog. If the program running in the 8032
MCU goes astray and the watchdog is no longer being cleared, then the
watchdog will restart the program.

Interrupt unit: The 8032 MCU responds to interrupts from twelve different sources that
are organized into three levels of priority.

The Byte-wide System SRAM

The TE505 on your CSoC Board contains 16 KBytes of fast static SRAM (SRAM). This
SRAM can store data or programs for the 8032 MCU.

The Memory Interface Unit

The MIU controls the access of the CSoC to external memory or other devices. The
set-up and hold timing for external devices can be programmed into the MIU.

The Address Mappers

The 8032 MCU uses 16-bit addresses to fetch instructions and data from internal or
external memory. The address mappers expand these addresses to 32-bits and send
them to the CSI address bus. At this point, the translated address will determine
whether the internal SRAM, external SRAM, or CSL is accessed. The address mappers
are programmable, so you can select which 8032 address ranges will activate an
internal or external memory access.

The JTAG Interface

You use a PC host system to program and debug a Triscend CSoC through a JTAG
interface consisting of four wires:

TCK: This clock input to the CSoC synchronizes the signals on the other JTAG wires.

TMS: The logic value on this input to the CSoC is used to steer the internal state
machine of the CSoC into various states for configuring the CSoC, debugging
its operations, etc.

TDI: This wire carries configuration data or other instructions to the CSoC.

TDO: This wire carries data from the CSoC back to the host system.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 75

The Hardware Breakpoint Unit

The 8032 MCU on your CSoC Board runs at up to 25 MHz. The four-wire JTAG
interface is too narrow to monitor the program and data accesses at this speed. You
can program the hardware breakpoint unit to monitor the 32-bit CSI address bus, the
byte-wide data bus, the control signals, and the type of memory access (instruction
fetch or data read/write). When a trigger event is detected, the hardware breakpoint
unit halts the CSoC and alerts the host system through the JTAG interface. Then you
can examine the state of the CSoC.

You will use the 8032 MCU, MIU, internal and external SRAM, and the address
mappers in the design examples that follow. You will not be directly involved with the
JTAG interface and hardware breakpoint unit, but these will be used by the software
tools as you do the examples.

Design 2.1 - 8032 MCU I/O Ports

Your first MCU-based CSoC design will read the settings of the DIP switch and display
the lower seven-bits on the seven-segment LED digit of the CSoC Board (Figure 12).
The MCU will continuously poll the DIP switch settings and then write the settings into a
register that drives the LED digit.

SEGA
SEGB

SEGF
SEGE
SEGD
SEGC

SEGG

8032
MCU

P0.0
P0.1

P0.6
P0.5
P0.4
P0.3
P0.2

P0.7

A

GF

E

D

C

B
1

2
3

4
5

6
7

8

LED.0
LED.1

LED.5
LED.4
LED.3
LED.2

LED.6

Figure 12: Block diagram of an MCU-based system that reads DIP switch settings
and displays them on an LED digit.

This design example requires you to design some hardware to read the DIP switch and
drive the LED digit, and then you have to write some software for the 8032 MCU that
passes the value from the DIP switch circuitry to the LED driver. You will create the
hardware in the next section and then go on to write the software.

Instantiating the Hardware

To begin this design, start FastChip and create a project called Chap21. Then open the
library of soft modules and select Peripherals⇒Ports⇒8032 PIO Port from the menu and
drop it into the Programmable I/O Pins area. This places a standard 8032 I/O port into your
design that you can use to read the DIP switch settings.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 76

Next, select I/O⇒Output and drop an output port into the same area. You will use this
output port to drive the LED. This output has to be driven with a value written by the
8032 MCU, so select Peripherals⇒Control⇒Command Register from the library and place it in
the Configurable System Logic area. This instantiates a register that the MCU can write with
the value to be displayed on the LED.

Why not use another 8032 port to drive the LED digit rather than the combination of a
command register and an output? Because the standard 8032 port cannot source
enough current to illuminate the LED segments (it is limited to sourcing less than 100
µA). But the Output module is capable of sourcing up to 12 mA per pin, which is plenty.

After instantiating these soft modules, your project design window will appears as
follows.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 77

Now you need to modify the modules to suit the design. Click on the Port_A module to
make the following window appear.

Within the window, select P0 in the 8032 PIO Port Type area. Then type P0 into the
Component Names box to reflect the function of this port. You will use this port to read the
DIP switch settings, so the output drive strength is irrelevant. Also, since the DIP switch
circuitry on your CSoC Board already has external pullups, you can enable or disable
the P0 pullups without affecting the operation of your design. Then click on OK to close
the window.

Next, click on the CmdReg_A module. When the Module window opens, change the
register width to seven bits (since there are seven LED segments) and change the
name of the register outputs to led. The 8032 MCU will write values into this register
that will appear on the led outputs, so the MCU needs a way to reference the register.
In the Symbolic Address box, type the name by which you will reference this register
(ledPort) in the program code for the 8032. You can select whether the MCU
accesses this register as if it were in the external data memory space (Xdata) or as if it
were a special function register (SFR). For external data accesses, the 8032 uses a
data pointer that is initialized to the register address. This takes a bit more code and a
bit more time than would be the case if the register was accessed as an SFR. SFRs
have addresses in the range [0x80,0xFF] so there are not very many of them. (A lot of
them are already used by the MCU's dedicated peripherals like the UART and timers.)
In this example, code size and execution time are not critical and there is plenty of

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 78

space in the SFR address region, so you can select either method. (I chose to make
the register an SFR.) The click on OK to finalize your modifications.

Click on the Output_B module to bring up the window that will configure the LED digit
drivers. Change the name of the module to LED so its function is easily discernable.
Adjust the output width to seven bits and connect the outputs to the Command
Register module by typing led into the <output> field. Change the drive strength to 12
mA so the LED segments will be brightly lit. Then click on OK to set the changes.

Now that the modules have been instantiated and their connectivity has been specified,
you can assign the inputs of the P0 port and the outputs of the LED port to the pins of
the CSoC using the I/O Editor. As shown below, the LED port consists of outputs only
(signified by red, unidirectional arrows) while the P0 port is capable of input and output

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 79

functions (represented by blue, bi-directional arrows). Click and drag the LED and P0
I/Os to the pins listed in Table 6.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 80

Table 6: Pin assignments and functions for the 8032 MCU I/O port design.

Signal Pin CSoC Board Resource

P0.0 53 DIP switch position #1

P0.1 54 DIP switch position #2

P0.2 55 DIP switch position #3

P0.3 58 DIP switch position #4

P0.4 59 DIP switch position #5

P0.5 60 DIP switch position #6

P0.6 62 DIP switch position #7

P0.7 63 DIP switch position #8

LED.0 35 LED digit segment A

LED.1 39 LED digit segment B

LED.2 43 LED digit segment C

LED.3 41 LED digit segment D

LED.4 40 LED digit segment E

LED.5 34 LED digit segment F

LED.6 36 LED digit segment G

You need to specify a clock to sequence the operations of the MCU. To do this, click on
the Clocks icon in the Dedicated Resources area of the project window. The Clock Control
window that appears lets you select one of several sources for the BusClock signal.
Click the button for the second option: Clock input to XTAL/BCLK. This selects the
dedicated clock input to the Triscend CSoC as the driver for BusClock. An external
programmable oscillator is connected to this input on the CSoC Board. If you have
configured your CSoC Board as described in Appendix B, then the external oscillator
will output a stable 25 MHz clock frequency. Type 25.00 into the Frequency field to let
the FastChip software know this is the frequency of the external clock source. Then
type 5 into the Clock Settling Time field. (This value is used by the Triscend CSoC to keep
the chip in a reset state until the main clock is stabilized after power-up. This parameter
isn't very important in your current environment since the CSoC Board is already

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 81

powered before the chip is ever configured with your timer circuit.) Then click on OK to
close the window.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 82

Finally, you need to set-up the memory interface unit because the instructions for your
MCU program will be stored in external memory. Click on the MIU icon in the Dedicated
Resources area of the project window and the following window will appear. This window
lets you select how many address bits will be used by the MIU to access external
memory. There are only 128 KBytes of external SRAM on your CSoC Board, so select
the smallest address range in the drop-down list (256 KBytes). This wastes one
address bit and the SRAM contents will be replicated twice within the 256 KByte
address range, but this won't cause any problems. Click on OK and move to the next
step.

Generating the Hardware/Software Interface

At this point you have defined the hardware for your design. Now you have to generate
a header file that links the hardware to the software you will write for the 8032 MCU.
Among other items, this header file will contain the addresses of the P0 and ledPort
registers you built into your hardware. Your application code will use these addresses
to read the DIP switch settings and write the data to the register that drives the LED
digit.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 83

You start the creation of the header file by clicking on the Generate toolbar icon. The
following window will appear.

You can generate a header file for use with either 8032 assembly or C code by clicking
on the Assembly or C button in the Generated Language area of the window. I used to write
8052 assembly code in the early 80's and I have no desire to revisit those times. Now I
write as much of my application software in C as possible. You are free to use either
language, but I will not present any examples of assembly language coding in this text.
Click on the C radio button to generate the C header file.

By default, the header file will be created in your FastChip project folder with the same
name as your project. You can use the Browse button to choose another folder, but I am
usually happy with the default. Once you select the language for your header file, the
File Name box in the Generated Source File area will change the suffix of the header file to
.inc or .h depending upon whether you chose to use assembly or C language,
respectively.

Clicking on OK generates the actual header file. If you checked the View Generated Code
box, then a window appears with the contents of the header file (Listing 1). The
interesting part of the header file is found on lines 31–35. The ledPort register is
placed in the SFR address space of the 8032 (as you specified previously when you
customized the CmdReg_A module) at address 0x9a. And port P0 is placed at address
0x80 in the SFR which is the standard address for this port in the 8051 MCU
architecture.

Listing 1: Top of the header file generated by the FastChip software for the
8032MCU I/O port design.

// Generated 3/5/00 11:39 AM By FastChip Version 1999 Build 151
2

///3
// ----------------------------------4

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 84

// ------ GENERATED CODE --------5
// ----------------------------------6
// The code in this header file was generated automatically for your7
// project by Triscend FastChip. Please DO NOT EDIT this header file.8
// It will be overwritten the next time FastChip generates code for9
// your project.10
//11
///12

13
//======== Required symbol and macro definitions ========14

15
#ifdef PROTOTYPE_ONLY16
define CHAR_XDATA(name,location) extern volatile unsigned char xdata name;17
define CHAR_ARRAY_XDATA(name,location,size) extern volatile unsigned char18
xdata name[size];19
#else20
define CHAR_XDATA(name,location) volatile unsigned char xdata name _at_21
location;22
define CHAR_ARRAY_XDATA(name,location,size) volatile unsigned char xdata23
name[size] _at_ location;24
#endif25

26
//========= BEGIN SOFT MODULE REGISTER DECLARATIONS ======27

28
//-------------------------------- Module CmdReg_A29
 sfr ledPort = 0x9a;30

31
//-------------------------------- Module P032
 sfr P0 = 0x80;33

34
//========== END SOFT MODULE REGISTER DECLARATIONS =======35

The header file contains a bunch of other address definitions for the standard SFRs of
the 8051 as well as some additional SFRs and extended data memory locations that
control functions found only in the Triscend 8032 MCU. These are followed by a series
of definitions for subroutines that initialize the peripherals of the 8032 such as the timers
and the UART. At the very bottom of the header file is a master initialization subroutine
(Chap21_INIT()) that calls all the other initialization subroutines (Listing 2).

Listing 2: Bottom of the header file generated by the FastChip software for the
8032 MCU I/O port design.

//========= PROJECT INITIALIZATION FUNCTION ======1
2

#ifdef PROTOTYPE_ONLY3
4

extern void Chap21_INIT();5
6

#else7
8

void Chap21_INIT () {9

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 85

 Timer_0_INIT();10
 Timer_1_INIT();11
 Timer_2_INIT();12
 UART_INIT();13
 Interrupt_INIT();14
 Watchdog_INIT();15
 DMA_0_INIT();16
 DMA_1_INIT();17
 Power_INIT();18
}19

20
#endif21

Creating the 8032 MCU Application Code

Now that you have the hardware designed and the header file that specifies the
addresses of the registers in the hardware, you can begin to create the application code
that will run in the 8032 MCU. To do this, you will have to leave the FastChip
environment and use software development tools for the 8051 architecture. In this text I
will use the Keil 8051 software tools, but you can use any 8051 compiler (although the
steps in creating and compiling the code will probably be different from what I show
here).

To begin, you should create a folder where you will store your application code. I
usually create a folder called keil within the FastChip project folder as shown below.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 86

Once the folder is created, click on the icon to start up the Keil integrated
development environment (IDE). In the µµµµVision/51 window that appears, click on the
File⇒New menu item to open a subwindow.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 87

In the <Untitled 1> window, type the source code for the application. Start with an
include statement that brings in all the definitions from the Chap21.h header file.
(Recall that the header file was generated in the FastChip project folder directly above
the keil folder.) Then create a main() routine whose first action is to call the
Chap21_INIT() subroutine that initializes all the 8032 peripherals. Finally, place an
infinite while-loop that continually reads the P0 port and writes the value into the
ledPort register. The header file will inform the compiler of the addresses for these
registers in the SFR space. That's all there is to the application code for this example!

Click on File⇒Save As… to bring up the following window. Store your source code in the
chap21.c file in the keil folder.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 88

Once your code is saved in the keil folder, you can create a project within the Keil IDE.
The project file will store all the settings and source files that are needed to generate the
8032 object code from the C source code. Click on the Project⇒New Project… menu item
as shown below.

In the Create New Project window that appears, save your project in the chap21.prj file in
the keil folder.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 89

Click on the OK button and the Project window will appear. You will use this window to
specify the source files that are compiled to create the project object code. This is
done by clicking on the Add button.

Clicking the Add button brings up the Add File to Project window. The C files in the keil
folder are shown in the left-hand side of the window. There is only one file in this
example, so click on chap21.c to select it and then click on Add.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 90

The Add File to Project window will disappear and the Project window will show that
the chap21.c file has been added to your Keil project. This is the only C file needed to
create the object code, so click on Save to store the list of source files in the chap21.prj
file.

Now you need to tell the Keil compiler and linker tools about the particular features that
exist in the Triscend 8032 core. That lets the compiler take advantage of any special
features in the hardware and it lets the linker know the organization of the memory
spaces. To set-up the compiler, click on the Options⇒C51 Compiler… menu item.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 91

Click on the Chip tab of the C51 Compiler Options window in order to specify the
number of data pointers in the Triscend 8032 MCU. This MCU is not included in the list,
but the Dallas version of the 8051 architecture has two data pointers just like the
Triscend 8032 MCU so select that one.

Next, click on the Memory Model tab. Select the Large limit on the code size so programs
can use as much as 64 KBytes of memory (even though you won't need that much).
Also select the Small memory model which stores program variables in the internal 256-
byte scratchpad memory of the 8032 MCU.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 92

Finally, click on the Object tab and check the folloing boxes to include extra debugging
information in the compiled object file. This extra information makes it easier to debug
C language programs using the Keil debugging tools. Click on OK to finalize your C51
compiler option settings.

Now set-up the linker by clicking on the Options⇒BL51 Code Banking Linker… menu item.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 93

Click on the Size/Location tab in the BL51 Code Banking Linker window that appears.
The 8032 MCU in the CSoC has 256 bytes of scratchpad RAM for storing variables, so
enter 256 into the Ram Size box.

Finally, click on the Linking tab and check all the boxes for including debugging
information into the object code. Then click on OK to close this window.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 94

Now that the source files and compiler/linker options are set for your project, click on the
Project⇒Make: Build Project menu item. This will compile the chap21.c file and then link it
into a HEX file that can be loaded into the Triscend CSoC.

If there are no errors during the compilation or linking processes, you will see a Project
Status window reporting that the make operation was successful. Otherwise you will
get a window listing any errors and their locations in the source code. Click on OK to
remove the Project Status window.

Binding and Downloading the Hardware and Application Code

Once the application code has been compiled and linked, you can re-enter the FastChip
project window and click on the Bind toolbar icon. This will map your hardware into the

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 95

CSL while making sure that the P0 and ledPort registers are assigned the same
addresses that are listed in the chap21.h header file.

After the binding operation is complete, click on the Download toolbar icon. In the
Download window, click on the Browse button in the Application Object Code area. Enter the
keil folder using the Triscend FastChip File Browse window that appears. You will see
the chap21.hex file that was generated by the Keil linker in the previous section. Select
the chap21.hex file and click on the Open button.

At this point, you will see the chap21.hex file is listed in the Intel HEX File Name box in the
FastChip Download window. This 8032 object code file will be combined with the
configuration file for the CSoC circuitry and the result will be loaded into the CSoC.

Now you have to decide where to load the 8032 object code. You could use the internal
16 KByte SRAM of the TE505 CSoC that exists in the 8032 address range of
[0x0000,0x3FFF]. But the linker in the evaluation version of the Keil software tools will
only place the 8032 object code at address 0x4000 or higher, so you can't use the
internal SRAM to hold the program.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 96

Your CSoC Board also has Flash RAM and SRAM (each stores 128 KBytes) that can
hold the object code. The Flash RAM will retain the object code even if the power to
your CSoC Board is interrupted. But you are just doing some quick tests on this code
and you don't need to store it for a long time. Programming the code into the Flash
RAM also takes a minute or so. For these reasons, you should choose External SRAM in
the Memory Device area of the Download window as shown below.

Once you select the external SRAM as the location for your 8032 object code, you have
to make a few more decisions. First, you can store the object code and configuration
for the CSoC into a HEX file that will be loaded into the CSoC Board SRAM at a later
time, or you can elect to download the object code and configuration directly into the
CSoC Board through the parallel port download cable. In this example, select the Direct
Program option.

Second, you have to give the FastChip some information on the type of external SRAM
chip you are using. FastChip knows the characteristics of a small set of SRAM devices,
but the SRAM chip on your CSoC Board isn't one of them so you need to use the Specify
Additional Part area to list its size and access time. The SRAM chip has 128 KBytes, but
the smallest size listed is 256 KBytes so choose that. This will replicate the contents of
the SRAM twice within the 256 KByte address range, but that won't cause a problem.
The access time for the CSoC Board SRAM chip is 15 ns so type that in as well.

Now click on OK in the Download window and the 8032 object code and the CSoC
configuration will download into your CSoC Board through the parallel port. As always, .
make sure your CSoC Board is attached to the 9V DC power supply and it is connected
to the parallel port of your PC with the downloading cable. You should also set the
shunts on jumpers J8 and J9 of the CSoC Board so that the SRAM chip-enable input is
connected to the CSoC MIU chip-enable output (see Appendix A2).

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 97

Testing Your Application Code

Now the CSoC Board is loaded with your circuit and application code. You will use the
Keil dScope debugging tool to test the code. In the Keil IDE, click on the Run⇒dScope
Debugger… menu item to start the debugger.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 98

The dScope window will appear with several subwindows that display MCU register
values and object code as well as those which allow you to reset the MCU and enter
other commands.

The first thing you need to do is inform the debugger of the type of MCU you are
working with. In the drop-down list near the top of the dScope window, select the 8032-
te5.dll entry. This installs a library of routines that interface the dScope debugger to the
TE505 8032 MCU and hardware breakpoint unit through the JTAG port.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 99

Once you select the MCU interface, the dScope debugger will initiate a connection with
the CSoC Board. Just click on OK in the TCP/IP Configuration window that appears.

After the connection is established, you should reset the 8032 MCU in the CSoC by
clicking on the Reset button in the Toolbox window. (If the Toolbox window is not
visible, click on the button in the dScope window.)

Once the MCU is reset, you should select File⇒Load object file… to load the debugging
information for your application into dScope. (This does not initiate another download to
the CSoC Board.)

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 100

A window will appear that you will use to select the file with the debugging information.
Go into the keil folder within your FastChip project folder and select the chap21 OMF file
(this file does not actually have any suffix). Click on OK and the debugging information
is loaded into dScope.

With the debugging information now available in dScope, you have the choice of
viewing your application software as assembly language, C high-level language, or a
mixed mode which shows each line of C code and its associated assembly language
instructions. Tracing through the your code's assembly language as it executes gives
you the most detailed view of what it is doing, but this level of detail is overkill for this
application. Instead, select the hll option from the drop-down list in the Module window
so you can view your code as C language statements.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 101

Now your Module window looks like the one below. Where is the C code? The Module
window shows code starting at the beginning of memory, but your C code starts at
address 0x4000 so it isn't visible.

There are two ways to get to the beginning of your C code. The first way is to click on
the slider bar on the right side of the Module window and slide it upwards until you see
Address = C:4000H at the bottom of the window. Release the slider and you may see your
C code displayed in the window. I say "may" because sometines this works for me, and
other times it doesn't.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 102

The second way to get to the start of your C code is more reliable, but takes a few more
steps. It involves setting a breakpoint at the start of the main() routine and then letting
the application program execute until it hits that breakpoint. This causes the program to
stop execution at the beginning of main() and the C code at that point will appear in
the Module window. To set the breakpoint, click on Setup⇒Breakpoints… in the menu bar
of the dScope window.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 103

The Breakpoints window will appear. It has an area which shows the current set of
breakpoints defined for your program (which should be empty at this time). Below that
is an Expression box where you can enter an expression that defines an address within
your program. This address is loaded into the hardware breakpoint unit of your CSoC.
The 8032 MCU will be halted when the breakpoint unit sees a combination of read
and/or write accesses to that address which equals the number entered into the Count
field in the Breakpoints window.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 104

But how do you write an expression for the beginning address of the main() routine?
It turns out you don't have to. Just click on the Show symbols… button in the Breakpoints
window. This brings up the Symbols window where you can see all the variable and
subroutine names for your program. Click on the Locals radio button and a list of the
subroutines will appear. Click on the MAIN() line in the Symbols window and drag it into
the Expression box in the Breakpoints window.

After you drop the MAIN() symbol into the Breakpoints window, it will appear in the
Expression box.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 105

Next, click on the Define button and the symbolic address in the Expression box will be
converted to a breakpoint that appears in the current Breakpoints area.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 106

At this point you have a single breakpoint, but you can have more than one in the list. If
you want to examine or change a breakpoint, just select it in the list as shown below.
You can enable or disable the checkpoint using the Enabled checkbox. Or you can
delete the breakpoint completely by clicking on the Kill selected button. You can also
increase or decrease the number of times the address is accessed before the
breakpoint becomes active by changing the value in the Count box. Or you can use the
Command box to enter a command in a C-like syntax that will be executed when the
breakpoint occurs. But you don't need to change anything about this breakpoint right
now. Just click on Close to accept the current breakpoint and remove the window.

Now the application code is loaded into the 8032 MCU and the debugger, the MCU is
reset, and the breakpoint at the start of main() is defined. You can start the MCU
program running by clicking on Go! or the button in the Module window. The 8032
will start to run, but it will immediately stop as soon as it gets to the beginning of the
main() routine.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 107

The Module window now shows the C code for your program. The next C statement
that will be executed is highlighted in red. This is a call to the subroutine that initializes
the various 8032 peripherals.

Now you can execute the C code statement-by-statement and see how the program
works. The StepOver! command or the button is used to execute a single C
statement. In this case the next statement is a subroutine call, so activating StepOver!
will enter the subroutine, execute all the statements in the subroutine, and then return to
the next statement in the calling routine and halt.

If you want to see the statements within the Chap21_INIT() subroutine as they are
executed, use the StepInto! command or the button to drop down into the subroutine.
Then use the StepOver! command to trace the execution of statements at that level, or
move deeper into the nested subroutines by using the StepInto! command. When you
trace to the end of a subroutine, you will automatically return to the next statement
following the subroutine call in the calling routine. If you have seen all you need to in
the current subroutine, you can issue the StepOut! command or press the button and
the rest of the statements in the subroutine will be executed, control will return to the
calling routine, and program execution will stop.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 108

After the Chap21_INIT() subroutine completes, the program enters the while loop.
The next statement that will be executed will read a value from the P0 port and transfer
it to the ledPort register. At this point, you should change some of the DIP switch
settings so you can see if the pattern on the LED digit changes.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 109

Clicking the StepOver! command or the button now moves the execution to the end of
the while loop. You should see the LED digit change to reflect the DIP switch setting
as shown in the examples in Figure 13.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 81 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Figure 13: The LED digit activation for several DIP switch settings.

At this point, you have to click the button twice before the LED digit segments
change to reflect the DIP switch settings. If you want your program to run at full speed
without interruption, just press the Go! command or the button. The program will not
return to the start of the main() routine so it will never hit the breakpoint and halt.
Once the program starts running, any changes to the DIP switches will appear
instantaneously on the LED digit. To halt the program, just click on the Stop! or
button.

Changing Your Application Code

What if you discover an error and want to correct your application code? For example,
suppose you want the LED segments to light up when their associated DIP switch is in

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 110

the up position instead of the down position. This is easy to handle in the C source
code: just add an inversion operator (~) before the P0 variable. This makes the
statement read the DIP switch settings from port P0, do a bitwise inversion of the value,
and then store the altered value into the ledPort register.

Now you have to recompile your program to reflect this change. Select Project⇒Make:
Update Project or click on the button in the µµµµVision/51 window. The C source code is
recompiled and linked to create a new chap21.hex file.

With the updated HEX file in hand, the next step is to load it into your CSoC Board. You
could use the downloading features of the FastChip software, but the dScope debugger
also has this capability. First, you should halt any program that is running in the 8032
MCU by pressing the Stop! command in the Module window. Then in the dScope
window, click on the Triscend⇒Download Hex… menu item as shown below.

myCSoC Programming the 8032 MCU Core

©2000 by XESS Corp. 111

This brings up a Download HEX file window where you can specify the name or
browse to the location of the updated HEX file. Click on Download to reload the CSoC
with the updated application code.

After the CSoC has been updated, you still need to load the debugging info for the new
source program into dScope. Do this by clicking on the File⇒Load Object File… menu item
and select the chap21 OMF file.

Once the updated debugging information is loaded, click on the Reset button in the
Toolbox window and then click on Go! in the Module window. With the program
running, you should see that the DIP switch buttons have the opposite effect on the
activation of the LED digit segments.

After verifying the operation of your modified program, click Stop! to halt the program.
Then select File⇒Exit in the dScope window to close the debugger. You can also exit
from the Keil IDE and the FastChip program.

Design 2.2 - UART Loopback

Your next MCU-based CSoC design will use the UART in the 8032 to transmit and
receive bytes of test data (Figure 14). The MCU will continuously load the UART
transmitter and poll the receiver to see if the received byte is identical to the transmitted
byte. An AND gate will be placed in the loopback path so the transmitted byte can be
blocked or passed through based on the setting of DIP switch 1. The MCU will display
an 0 on the LED digit as long as the loopback path is not broken (gate = 1). When the
path is broken (gate = 0), the transmitted and received bytes will no longer match and
the MCU will display an E.

