
myCSoC Logic Design With Soft Modules

©2000 by XESS Corp. 48

You can download your design once the bind process completes. As always, make
sure your CSoC Board is attached to the 9V DC power supply and it is connected to the
parallel port of your PC with the downloading cable. Click on the Download icon on the
toolbar and then click on OK in the Download window that appears. This initiates the
downloading of the configuration file into your CSoC Board.

With your design downloaded into the CSoC Board, you can try some test cases to see
if various inputs are summed correctly. The first addend is driven by the first three DIP
switches, the second addend is driven by the next set of three switches, and the carry
input is set by the seventh switch. Figure 7 shows a few test examples.

1 2

A=1 A=7 A=7 A=7B=5 B=5 B=7 B=7

C=0 C=1 C=0 C=1

3 4 5 6 7 8 1 2 3 4 5 6 7 81 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Figure 7: Testing the three-bit adder.

Once you are done testing the adder, finish by clicking on File⇒Save Project and File⇒Exit.

Design 1.3: A Simple Timer

Your previous designs were combinatorial in nature: the output was a function of only
the current inputs. This design introduces a sequential component, a counter, whose
output depends upon its previous state.

The counter is used to build a timer where the elapsed time is displayed on the seven-
segment LED (Figure 8). A 25 MHz clock drives a 27-bit counter. The counter will roll-

myCSoC Logic Design With Soft Modules

©2000 by XESS Corp. 49

over every 227/25x106 seconds = 5.37 seconds. The upper four bits of the counter are
connected to a seven-segment LED decoder. The LED digit will display all sixteen
hexadecimal numerals in 5.37 seconds, so each numeral appears for 0.34 seconds.
The count stops changing when the enable signal is pulled low.

SEGA
SEGB

SEGF
SEGE
SEGD
SEGC

SEGG

7-segment
LED decoder

27-bit
counterenable

25 MHz

BUSCLK

count26

count23

count[22:0]

count24
count25

A

GF

E

D

C

B

Figure 8: Block diagram of a simple timer that displays elapsed time on a seven-
segment LED.

You can begin this design from scratch. Start the FastChip software and type
Chapter1.3 in the Project Name field. Then use the Target Device area to select the E5
device in a 128-pin LQFP with a maximum clock frequency of 25 MHz. Click on OK to
get to the project window.

myCSoC Logic Design With Soft Modules

©2000 by XESS Corp. 50

Once the project window appears, display the Triscend Library and drag-and-drop a
seven-segment LED driver and an input module into the Programmable I/O Pins area. Then
drag-and-drop a Reloadable Binary Counter icon to the Configurable System Logic area.

myCSoC Logic Design With Soft Modules

©2000 by XESS Corp. 51

Now, click on the Counter_A icon so you can setup the counter. The Reloadable Binary
Counter window shows the module is initially configured as an eight-bit up-counter.

First, increase the counter width to 27 bits.

myCSoC Logic Design With Soft Modules

©2000 by XESS Corp. 52

Then, click on the checkbox at the right of the <term count> field to disable this output.
(You only need this output when you are cascading one or more counters.) Then click
on the unchecked box at the left of the counter enable input (ClkEna).

At this point you can begin connecting the counter. Type enable in the ClkEna field.
This will be the signal driven by the Input_A module which turns the timer on and off.
Then type count into the <count> field. Click outside of the field and the width ([26:0]) is
automatically appended to the signal name.

myCSoC Logic Design With Soft Modules

©2000 by XESS Corp. 53

To connect a clock to the counter, click on the button to the right of the <clock> field
and select BusClock from the drop-down list. BusClock is one of the global clock signals
that is available to the cells in the CSL. Later you will see how to select the clock that is
distributed over the BusClock net.

You have finished configuring the Counter_A module, so click on OK.

myCSoC Logic Design With Soft Modules

©2000 by XESS Corp. 54

Once you return to the project window, click on the Input_A icon and set-up that module.
The only thing you needs to modify is to connect the output of the module to the enable
signal. Click on OK to leave the window.

Next, click on the 7seg_E icon to configure the LED driver module. Click on the button to
the left of Common anode to match with the driver with the polarity of the LED digit on your
CSoC Board. Then type counter[26:23] into the <hex value> field. This will cause the
LED to display the hexadecimal numeral that corresponds to the upper four-bits of the
counter. The counter rolls-over every 5.37 seconds, so each of the sixteen numerals
will appear for only 0.34 seconds. That completes the changes you need to make to the
7seg_E module, so click the OK button.

myCSoC Logic Design With Soft Modules

©2000 by XESS Corp. 55

The timer circuit is almost complete except you haven't set-up the BusClock yet. To do
this, click on the Clocks icon in the Dedicated Resources area of the project window.

myCSoC Logic Design With Soft Modules

©2000 by XESS Corp. 56

The Clock Control window that appears lets you select one of several sources for the
BusClock signal. In the Bus Clock Source area, the internal ring oscillator is selected as
the default clock source. This oscillator uses the delay through a loop of logic gates to
set the clock period. Because the delay through a logic gate is dependent on factors
such as temperature and voltage variations, the ring oscillator frequency can vary from
5 to 20 MHz.

myCSoC Logic Design With Soft Modules

©2000 by XESS Corp. 57

A better clock source for a timer is selected by clicking the button for the second option:
Clock input to XTAL/BCLK. This selects the dedicated clock input to the Triscend CSoC as
the driver for BusClock. An external programmable oscillator is connected to this input
on your CSoC Board. If you have configured your CSoC Board as described in
Appendix A2, then the external oscillator will output a stable 25 MHz clock frequency.
Type 25.00 into the Frequency field to let the FastChip software know this is the
frequency of the external clock source. Then type 5 into the Clock Settling Time field.
(This value is used by the Triscend CSoC to keep the chip in a reset state until the main
clock is stabilized after power-up. This parameter isn't very important in your current
environment since the CSoC Board is already powered before the chip is ever
configured with your timer circuit.)

This completes the set-up for the timer clock source, so click on OK.

myCSoC Logic Design With Soft Modules

©2000 by XESS Corp. 58

Now that you have the internal circuitry defined, bring up the I/O Editor window and
assign the inputs and outputs as follows:

Table 3: Pin assignments and functions for the timer design.

Signal Pin CSoC Board Resource

Input_A.0 53 DIP switch position #1

7seg_E.SEGA 35 LED digit segment A

7seg_E.SEGB 39 LED digit segment B

7seg_E.SEGC 43 LED digit segment C

7seg_E.SEGD 41 LED digit segment D

7seg_E.SEGE 40 LED digit segment E

7seg_E.SEGF 34 LED digit segment F

7seg_E.SEGG 36 LED digit segment G

myCSoC Logic Design With Soft Modules

©2000 by XESS Corp. 59

After you make the pin assignments, the I/O Editor window will appear as follows:

Now that the pin assignments are complete, click on OK to return to the project window.
Then bind and download the timer circuit to your CSoC Board. Once the circuit is in the
CSoC Board, you can make the timer run by placing DIP switch #1 into its lower
position. You should see all sixteen hexadecimal numerals displayed repeatedly on the
CSoC LED in a 5 second loop. Raising DIP switch #1 will halt the incrementing of the
LED digit.

Design 1.4 - PS/2 Keyboard Scanner

This example creates a circuit that accepts scan codes from a keyboard attached to the
PS/2 interface of the CSoC Board. If a scan code for one of the keys "0"–"9" arrives,
then the numeral will be displayed on the LED digit of the CSoC Board.

The format of the scan code transmissions from the keyboard are shown in Figure 9.
The keyboard drives the clock and data lines. The start of a scan code transmission is
indicated by a low level on the data line at the falling edge of the clock. The eight bits of
the scan code follow on successive falling clock edges (starting with the least-significant
bit). These are followed by an odd-parity bit and then a high-level stop bit.

