

XSA Flash Programming and
SpartanII Configuration

March 17, 2004 (Version 1.1) Application Note by D. Vanden Bout

Summary

This application note describes the circuits that let the XC9572XL CPLD program the Flash on the XSA Board and
then configure the SpartanII FPGA with the data stored in the Flash.

Using Flash with the XSA Board

The 2 Mb Flash chip on the XSA Board can be used
to store configurations for the SpartanII FPGA. When
used in this way, there are three steps used to set up
the Flash:

1. Configure the XC9572XL CPLD with a
programming circuit that connects the Flash to
the parallel port.

2. Program the Flash by passing the SpartanII
configuration bitstream through the parallel port.

3. Load the CPLD with a configuration circuit that
will, upon power-up of the XSA Board, load the
SpartanII with the bitstream stored in the Flash.

The Flash Programming Interface

Listing 1 and Listing 2 show the VHDL code and pin
assignments for the CPLD circuit that connects the
Flash to the parallel port. This circuit is simply an
interface that allows the PC to read and write the
Flash using only four data bits and two control
signals. The PC uses this simple interface to control
the higher-level Flash programming functions such as
erasing the Flash sectors before they are
programmed with new data.

The Flash programming circuit performs the following
functions:

• It collects six successive nybbles from the
parallel port and concatenates these into a 24-bit
Flash address.

• It collects two successive nybbles from the
parallel port and concatenates these into a byte
of Flash data.

• It writes the data into the Flash at the given
address and then loops back to await the arrival
of another set of address and data nybbles.

• While gathering the nybbles for an address, it
also reads the byte of Flash data from the
previous loop and passes it to the parallel port in
segments of 3, 3 and 2 bits each.

How the VHDL implements these functions is
described below.

Lines 10-32 of Listing 1 define the interface for the
circuit. It uses six data pins of the parallel port: four
for passing data and address nybbles, one for a
synchronizing clock to drive the state machine in the
CPLD, and one as a reset for the state machine.
Three status pins of the parallel port are used to send
Flash data back to the PC and to report the current
state of the CPLD state machine. The CPLD also
interfaces to the address, data, and control pins of
the Flash chip and the PROGRAM pin of the
SpartanII FPGA.

The eight states of the Flash programming state
machine are defined on lines 43-53. Six states are
used to gather the 24-bit Flash address in nybble
chunks, and then two more states are used to collect
the data byte that will be written to the Flash.

Line 63 makes the CPLD pull the SpartanII
PROGRAM pin low so it stays in its unconfigured
state. This tristates the pins of the SpartanII so it
can't interfere with the programming of the Flash
chip. Line 64 makes sure the reset of the Flash chip
is released so it can be programmed.

Lines 65-67 just rename the parallel port data pins
with more understandable names that reflect their
underlying functions.

March 17, 2004 (Version 1.1) 1

XSA Flash Programming and SpartanII Configuration

The main process for the Flash programming state
machine begins on line 71. Lines 74-81 just set the
default values for the outputs from the state machine.

Lines 87-132 implement the six states that
concatenate nybbles from the parallel port into a 24-
bit address. During each of these states, the nybble
from the parallel port is placed into the appropriate
slot in the address register. The current state is also
reported back to the PC through the parallel port
status lines in states load_a20, load_a4, and
load_a0. The Flash programming code in the PC
uses this information to make sure it is in sync with
the state machine.

However, during states load_a16, load_a12 and
load_a8 the status lines are used to carry the
segments of a data byte from the Flash back to the
PC over the parallel port status lines. The location of
this data in the Flash is stored in the next_addr
register in state load_a20 (line 92). This address
appears on the Flash address lines at the start of
state load_a16 and persists until the next_addr
register is written to again. During states load_a16,
load_a12 and load_a8, the Flash chip-enable and
output-enable lines are forced low and the upper
three bits, middle three bits and lowest two bits of the
Flash data byte at the given address are passed
through the parallel port (lines 103, 113 and 124,
respectively). The Flash programming code in the
PC gathers these nybbles and assembles the byte of
Flash data.

Lines 133-152 implement the two states that
concatenate two data nybbles into a byte of data that
is written into the Flash at the address loaded during
the previous six states. The actual write occurs in the
second half of state load_d0 when the clock is low.
this gives the address time to settle from the previous
cycle before the write occurs. When the clock goes
high to end the write pulse, the state machine
transfers to state load_a20. Note that when state
load_a20 is first entered, line 90 ensures that the
Flash data lines are still carrying the same value as
they were in state load_d0. This ensures the data
hold time for the Flash.

The process on lines 168-182 updates the state,
address, and data registers on the rising clock edge.
A reset from the parallel port will clear the data
register and send the state machine to the load_a20
state to start another Flash address cycle. Note that
the reset will not clear the address register. This
allows the PC to read the Flash without writing it by
forcing a reset after state load_a0. When the state
machine returns to the load_a16, load_a12 and
load_a8 states, the PC can read the Flash data at the

address that was loaded during the previous loop.
This would not be possible if the address register was
cleared by a reset.

The process on lines 186-193 updates the register
that drives the Flash address lines. (The connection
of this register to the Flash address lines is done on
line 195.) The address lines change on the falling
clock edge. This ensures the address lines are
stable before any potential write operation is initiated
on the next rising clock edge.

The SpartanII-Flash Configuration Circuit

Listing 3 and Listing 4 show the VHDL code and pin
assignments for the CPLD circuit that configures the
SpartanII FPGA with the bitstream programmed into
the Flash. This circuit is simply increments an
address counter which reads out the next byte of
Flash data and strobes it into the SpartanII. When
the SpartanII signals that it is completely configured,
then the CPLD ceases operations. How the VHDL
implements these functions is described below.

Lines 10-37 of Listing 3 define the interface for the
circuit. It uses the programmable oscillator on the
XSA Board as the main clock. The CPLD also
interfaces to the address and control pins of the
Flash chip so it can fetch the bytes of the SpartanII
configuration bitstream. (It doesn't need to access
the Flash data pins since these are already directly
connected to the configuration data inputs of the
SpartanII chip on the XSA Board.) The CPLD stuffs
the bitstream into the SpartanII using the
configuration control pins.

Line 55 merely renames the S2_dout pin of the
SpartanII to S2_busy since the SpartanII will use this
signal to indicate when it is busy storing a byte of
configuration data. Line 58 causes the CPLD to
output the code onto the mode pins of the SpartanII
that place it in the Slave Parallel configuration mode.
In this mode, the SpartanII chip accepts bytes of
configuration data on the rising edge of the
configuration clock as long as its chip-select and
write-enable are active.

Lines 62-65 set the Flash control pins so it can output
the data bytes of the SpartanII bitstream. The CPLD
releases its control of these pins when the SpartanII
signals that the configuration process is done
(S2_done=HI).

The Flash chip has an access time of 90 ns while the
XSA Board oscillator can run as fast as 100 MHz.

March 17, 2004 (Version 1.1) 2

XSA Flash Programming and SpartanII Configuration

Lines 70-77 implement a counter that divides the
oscillator frequency by 16 and uses the slower clock
to drive the configuration of the SpartanII.

After power is applied to the XSA Board, the
SpartanII FPGA needs some time to settle before
configuration starts. Lines 81-91 create a power-on
timeout counter and a reset signal that is active until
the counter reaches zero. Then the reset is removed
and the configuration starts. Line 7 of Listing 4
ensures that the timeout counter in the CPLD is
initialized to the 11…1 state upon power-up of the
XSA Board.

Lines 96-98 use the power-on reset to lower the
PROGRAM pin of the SpartanII when the board
powers up. The PROGRAM signal is pulled high
after the power-on timeout expires and the SpartanII
configuration starts.

Lines 102-109 select the SpartanII chip for
configuration when the PROGRAM pin is high and
the SpartanII is not indicating a configuration error by
pulling its INIT pin low. The internal chip-select
signal is inverted and drives the SpartanII chip-select
and write-enable pins on lines 114-115. The CPLD
releases control of these pins when the configuration
process is done.

The process on lines 122-131 controls the fetching of
configuration data from the Flash. The Flash address
register is set to zero while the SpartanII is held in its
reset state with the PROGRAM pin pulled low. After
the PROGRAM pin goes high and configuration
starts, the Flash address is incremented on every
clock cycle as long as the SpartanII chip is selected
and the SpartanII is not signaling a configuration
error (INIT=HI) or that it is busy with a previous byte
of configuration data (BUSY=LO). The value in the
address counter is passed to the Flash chip address
pins on line 135.

After the SpartanII is configured, line 138 passes the
clock from the programmable oscillator to the
SpartanII for use as a clock waveform by whatever
logic is now active in the FPGA.

March 17, 2004 (Version 1.1) 3

Listing 1: VHDL code for the Flash programming interface.
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

--
-- XC9500 CPLD design which controls the loading of the XSA Flash
-- with data from the PC parallel port.
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity updnload is
 generic
 (
 ADDR_LEN: positive := 18 -- number of address bits for XSA FLASH
);
 port
 (
 -- parallel port data and status pins
 ppd: in std_logic_vector(5 downto 0); -- data nybble, clk, reset from par. port
 pps: out std_logic_vector(5 downto 3); -- status nybble to parallel port

 -- Flash data, address, and control pins
 fd: inout std_logic_vector(7 downto 0); -- data bus to XSA FLASH
 fa: out std_logic_vector(ADDR_LEN-1 downto 0); -- address bus to XSA FLASH
 fceb: out std_logic; -- chip-enable for XSA FLASH
 foeb: out std_logic; -- output-enable for XSA FLASH
 fweb: out std_logic; -- write-enable for XSA FLASH
 frstb: out std_logic; -- reset for XSA FLASH

 -- spartan2 FPGA pins
 S2_progb: out std_logic -- spartan2 PROGRAM pin
);
end updnload;

architecture updnload_arch of updnload is

 constant LO : std_logic := '0';
 constant HI : std_logic := '1';
 constant NO : std_logic := '0';
 constant YES: std_logic := '1';

 -- states for the state machine that programs the Flash
 type flash_state_type is
 (
 load_a20, -- load address nybble A23-A20
 load_a16, -- load address nybble A19-A16, read data nybble D7-D5
 load_a12, -- load address nybble A12-A15, read data nybble D4-D2
 load_a8, -- load address nybble A8-A11, read data nybble D1-D0
 load_a4, -- load address nybble A4-A7
 load_a0, -- load address nybble A0-A4
 load_d4, -- load data nybble D4-D7
 load_d0 -- load data nybble D0-D3
);

 signal flash_state, next_flash_state: flash_state_type;
 signal clk, reset: std_logic;
 signal nybble: std_logic_vector(3 downto 0);
 signal addr, next_addr: std_logic_vector(ADDR_LEN-1 downto 0);
 signal addr_reg, next_addr_reg: std_logic_vector(23 downto 0);
 signal data_reg, next_data_reg: std_logic_vector(3 downto 0);

begin
 S2_progb<= LO; -- keep spartan2 in reset state so it doesn't interfere

March 17, 2004 (Version 1.1) 4

XSA Flash Programming and SpartanII Configuration

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

 frstb <= HI; -- remove Flash reset so the chip is enabled
 reset <= not ppd(0); -- Flash prog. state machine reset from D0 of parallel port data
 clk <= not ppd(1); -- state machine clock from D1 of parallel port data
 nybble <= ppd(5 downto 2); -- Flash data nybble from parallel port data

 -- this process directs the state transitions of the Flash programming
 -- state machine and sets the control outputs for each state
 process(addr,addr_reg,fd,data_reg,nybble,ppd,flash_state)
 begin
 -- the following statements set the default values for the outputs
 foeb <= HI; -- Flash chip data pin drivers disabled
 fceb <= HI; -- Flash chip disabled
 fweb <= HI; -- no write operations to Flash chip
 fd <= (others=>'Z'); -- no data driven into the Flash chip
 pps <= "111"; -- illegal state reported on status pins
 next_addr <= addr; -- Flash address does not change
 next_addr_reg <= addr_reg;
 next_data_reg <= data_reg; -- Flash data does not change

 -- now use the current state to determine the outputs and the
 -- next state for the Flash programming state machine
 case flash_state is

 when load_a20 =>
 -- load Flash address bits A23-A20 and output the
 -- last complete Flash address that was assembled previously
 fd <= data_reg & nybble; -- complete data byte written to Flash
 next_addr_reg(23 downto 20) <= nybble; -- store A23-A20
 next_addr <= addr_reg(ADDR_LEN-1 downto 0); -- output last addr
 pps <= "000"; -- report current state through parallel port
 next_flash_state <= load_a16; -- go to next state

 when load_a16 =>
 -- load Flash address bits A19-A16, read the contents
 -- from the previous Flash address, and send the upper
 -- 3 bits of the Flash data back through the parallel port
 next_addr_reg(19 downto 16) <= nybble; -- store A19-A16
 fceb <= LO; -- enable Flash
 foeb <= LO; -- read Flash
 pps <= fd(7 downto 5); -- send upper 3 data bits back to PC
 next_flash_state <= load_a12; -- go to next state

 when load_a12 =>
 -- load Flash address bits A15-A12, read the contents
 -- from the previous Flash address, and send the middle
 -- three bits of the Flash data back through the parallel port
 next_addr_reg(15 downto 12) <= nybble; -- store A15-A12
 fceb <= LO; -- enable Flash
 foeb <= LO; -- read Flash
 pps <= fd(4 downto 2); -- send middle 3 data bits back to PC
 next_flash_state <= load_a8; -- go to next state

 when load_a8 =>
 -- load Flash address bits A11-A8
 -- load Flash address bits A11-A8, read the contents
 -- from the previous Flash address, and send the lowest
 -- two bits of the Flash data back through the parallel port
 next_addr_reg(11 downto 8) <= nybble; -- store A11-A8
 fceb <= LO; -- enable Flash
 foeb <= LO; -- read Flash
 pps <= "0" & fd(1 downto 0); -- send lowest 2 data bits back to PC
 next_flash_state <= load_a4; -- go to next state

 when load_a4 =>
 -- load Flash address bits A7-A4

March 17, 2004 (Version 1.1) 5

XSA Flash Programming and SpartanII Configuration

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

 next_addr_reg(7 downto 4) <= nybble; -- store A7-A4
 pps <= "001"; -- report current state through parallel port
 next_flash_state <= load_a0; -- go to next state

 when load_a0 =>
 -- load Flash address bits A3-A0
 next_addr_reg(3 downto 0) <= nybble; -- store A3-A0
 pps <= "010"; -- report current state through parallel port
 next_flash_state <= load_d4; -- go to next state

 when load_d4 =>
 -- output the assembled address to the Flash and load the
 -- upper nybble of data that will be written to the Flash
 next_addr <= addr_reg(ADDR_LEN-1 downto 0); -- output complete addr
 fceb <= LO; -- enable the Flash
 next_data_reg <= nybble; -- store upper data nybble from par port
 fd <= data_reg & nybble; -- output data to the Flash
 pps <= "011"; -- report current state through parallel port
 next_flash_state <= load_d0; -- go to the next state

 when load_d0 =>
 -- now get the lower nybble of data from the parallel port
 -- and write the complete byte to the Flash during the
 -- second half of the clock phase
 fceb <= LO; -- keep the Flash enabled
 fweb <= clk; -- write goes low during second half of clock cycle
 fd <= data_reg & nybble; -- complete data byte written to Flash
 pps <= "100"; -- report current state through parallel port
 next_flash_state <= load_a20; -- go back to the start

 when others =>
 -- return the state machine to the initial state if it
 -- ever gets into an erroneous state
 next_flash_state <= load_a20;

 end case;
 end process;

 -- update the programming machine state and other registers
 process(reset,clk)
 begin
 if (reset=HI) then
 -- asynchronous reset sets state machine to initial state
 -- and clears data register
 flash_state <= load_a20;
 data_reg <= (others=>'0');

 elsif (clk'event and clk=HI) then
 -- update the machine state and other registers on rising clock edge
 flash_state <= next_flash_state;
 addr_reg <= next_addr_reg;
 data_reg <= next_data_reg;
 end if;
 end process;

 -- output Flash addresses one-half cycle early. This gives the Flash
 -- address time to settle and activate the appropriate location for writing.
 process(clk)
 begin
 -- change Flash address during the second half of the clock cycle
 -- before the machine changes states
 if (clk'event and clk=LO) then
 addr <= next_addr;
 end if;
 end process;

March 17, 2004 (Version 1.1) 6

XSA Flash Programming and SpartanII Configuration

194
195
196
197

 fa <= addr; -- output address to the Flash chip

end updnload_arch;

March 17, 2004 (Version 1.1) 7

Listing 2: Pin assignments for the Flash programming interface.
1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

pin assignments for the XC9572XL CPLD chip on the XSA Board

Spartan2 FPGA connections to CPLD
net S2_clk loc=p42;
net S2_tck loc=p13;
net S2_dout loc=p18;
net S2_din loc=p2;
net S2_wrb loc=p19;
net S2_csb loc=p15;
net S2_initb loc=p38;
net S2_done loc=p40;
net S2_progb loc=p39;
net S2_cclk loc=p16;
net S2_m<0> loc=p36;
net S2_d<0> loc=p2;
net S2_d<1> loc=p4;
net S2_d<2> loc=p5;
net S2_d<3> loc=p6;
net S2_d<4> loc=p7;
net S2_d<5> loc=p8;
net S2_d<6> loc=p9;
net S2_d<7> loc=p10;

Flash RAM
net fd<0> loc=p2;
net fd<1> loc=p4;
net fd<2> loc=p5;
net fd<3> loc=p6;
net fd<4> loc=p7;
net fd<5> loc=p8;
net fd<6> loc=p9;
net fd<7> loc=p10;
net fa<0> loc=p1;
net fa<1> loc=p64;
net fa<2> loc=p63;
net fa<3> loc=p62;
net fa<4> loc=p61;
net fa<5> loc=p60;
net fa<6> loc=p59;
net fa<7> loc=p58;
net fa<8> loc=p45;
net fa<9> loc=p44;
net fa<10> loc=p57;
net fa<11> loc=p43;
net fa<12> loc=p56;
net fa<13> loc=p46;
net fa<14> loc=p47;
net fa<15> loc=p52;
net fa<16> loc=p51;
net fa<17> loc=p48;
net frstb loc=p50; # Flash reset
net foeb loc=p12; # Flash output-enable
net fweb loc=p49; # Flash write-enable
net fceb loc=p11; # Flash chip-enable

March 17, 2004 (Version 1.1) 8

XSA Flash Programming and SpartanII Configuration

DIP and pushbutton switches 58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

net dipsw<1> loc=p47;
net dipsw<2> loc=p52;
net dipsw<3> loc=p51;
net dipsw<4> loc=p48;

7-segment LEDs
net s<0> loc=p10;
net s<1> loc=p2;
net s<2> loc=p9;
net s<3> loc=p8;
net s<4> loc=p5;
net s<5> loc=p7;
net s<6> loc=p6;
net dp loc=p4;

programmable oscillator
net clk loc=p17;

parallel port
net ppd<0> loc=p33;
net ppd<1> loc=p32;
net ppd<2> loc=p31;
net ppd<3> loc=p27;
net ppd<4> loc=p25;
net ppd<5> loc=p24;
net ppd<6> loc=p23;
net ppd<7> loc=p22;
net pps<3> loc=p34;
net pps<4> loc=p20;
net pps<5> loc=p35;

March 17, 2004 (Version 1.1) 9

1

Listing 3: VHDL code for the SpartanII-Flash configuration circuit.
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

--
-- XC9500 CPLD design which controls the configuration of the XSA Spartan2
-- with data from the Flash chip.
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity config is
 generic
 (
 ADDR_LEN: positive := 18 -- number of Flash address bits
);
 port
 (
 clk : in std_logic; -- clock from DS1075 prog. osc.

 -- Flash address and control pins
 fa : out std_logic_vector(ADDR_LEN-1 downto 0); -- Flash address
 fceb : out std_logic; -- Flash chip-enable
 foeb : out std_logic; -- Flash output-enable
 fweb : out std_logic; -- Flash write-enable
 frstb : out std_logic; -- Flash reset

 -- Spartan2 configuration pins
 S2_clk : out std_logic; -- Spartan2 global clock input
 S2_progb : out std_logic; -- Spartan2 PROGRAM pin
 S2_cclk : out std_logic; -- Spartan2 config clock
 S2_csb : out std_logic; -- Spartan2 config chip-select
 S2_wrb : out std_logic; -- Spartan2 config write-enable
 S2_initb : in std_logic; -- Spartan2 config init status
 S2_dout : in std_logic; -- Spartan2 config busy status
 S2_done : in std_logic; -- Spartan2 config done status
 S2_m : out std_logic_vector(0 downto 0) -- Spartan2 config. mode pins
);
end config;

architecture config_arch of config is
 constant LO : std_logic := '0';
 constant HI : std_logic := '1';
 constant FLOAT : std_logic := 'Z';

 signal clk_cnt : std_logic_vector(3 downto 0);
 signal cclk : std_logic;
 signal programb, cs : std_logic;
 signal addr, next_addr : std_logic_vector(ADDR_LEN-1 downto 0);
 signal poweron_reset : std_logic;
 signal poweron_cnt : std_logic_vector(19 downto 0);
 signal S2_busy : std_logic;
 signal button_progb : std_logic;
 component pullup port(O: out std_logic); end component;
begin

 S2_busy <= S2_dout; -- give this signal a better name

 -- set Spartan2 mode to Slave Parallel so it can be configured from Flash
 S2_m <= "0";

 -- Flash is enabled for reading while Spartan2 is not yet configured
 -- and then the Flash pins float when configuration is done
 foeb <= LO when (S2_done=LO) else FLOAT;

March 17, 2004 (Version 1.1) 10

XSA Flash Programming and SpartanII Configuration

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

 fceb <= LO when (S2_done=LO) else FLOAT;
 fweb <= HI when (S2_done=LO) else FLOAT; -- disable Flash writes
 frstb <= HI; -- remove Flash reset

 -- generate configuration clock for Spartan2 from the XSA clock.
 -- The XSA clock could be as much as 100 MHz, so divide by 16
 -- to exceed the access time of the Flash.
 process(clk)
 begin
 if(clk'event and clk=HI) then
 clk_cnt <= clk_cnt + 1;
 end if;
 end process;
 cclk <= clk_cnt(3); -- internal configuration clock
 S2_cclk <= cclk; -- also send config. clock to Spartan2

 -- Apply reset when the power to the XSA Board is first applied.
 -- Remove the power-on reset after the counter reaches 0.
 process(cclk)
 begin
 if(cclk'event and cclk=HI) then
 if(poweron_cnt = 0) then
 poweron_reset <= LO;-- remove reset when timeout expires
 else
 poweron_cnt <= poweron_cnt - 1;
 poweron_reset <= HI;
 end if;
 end if;
 end process;

 -- initiate Spartan2 configuration by lowering the /PROGRAM pin
 -- during the initial power-on reset and then raising it when
 -- the power-on timeout expires and the manual program control is high
 programb <= not(poweron_reset);
 u0: pullup port map(O=>S2_progb); -- place a pullup on the Spartan2 PROGRAM pin
 S2_progb <= LO when programb=LO else 'Z'; -- programming pulse comes from parallel port

 -- Select the Spartan2 for configuration as long as the /PROGRAM pin
 -- is not held low and the INIT pin is not low.
 process(cclk,programb)
 begin
 if(programb = LO) then
 cs <= LO;
 elsif(cclk'event and cclk=HI) then
 cs <= S2_initb;
 end if;
 end process;

 -- Select the Spartan2 for configuration by lowering its chip-select
 -- and write inputs when the internal chip-select is high. Then
 -- float these pins after the Spartan2 configuration is done.
 S2_csb <= not(cs) when (S2_done=LO) else FLOAT;
 S2_wrb <= not(cs) when (S2_done=LO) else FLOAT;

 -- increment the Flash address so the next byte of configuration
 -- data is presented to the Spartan2. Stop incrementing if the
 -- Spartan2 is not selected, signals a config. error (INIT=0), or
 -- is busy. Reset the address counter to zero whenever the
 -- /PROGRAM pin goes low and a new configuration sequence begins.
 process(cclk)
 begin
 if(cclk'event and cclk=HI) then
 if((cs=HI) and (S2_initb=HI) and (S2_busy=LO)) then
 addr <= addr + 1;
 elsif(programb = LO) then

March 17, 2004 (Version 1.1) 11

XSA Flash Programming and SpartanII Configuration

128
129
130
131
132
133
134
135
136
137
138
139
140

 addr <= (others=>LO);
 end if;
 end if;
 end process;

 -- pass the Flash address out to the Flash chip. Float the address
 -- lines once configuration is done.
 fa <= addr when (S2_done=LO) else (others=>FLOAT);

 -- pass the clock from the DS1075 to the Spartan2 after it is configured
 S2_clk <= clk when (S2_done=HI) else FLOAT;

end config_arch;

March 17, 2004 (Version 1.1) 12

Listing 4: Pin assignments for the SpartanII-Flash configuration circuit.
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

pin assignments for the XC9572XL CPLD chip on the XSA Board

set all the bits in the initial state of the power-on
counter so we get the maximum timeout interval
inst poweron_cnt_reg<*> INIT=S;

Spartan2 FPGA connections to CPLD
net S2_clk loc=p42;
net S2_tck loc=p13;
net S2_dout loc=p18;
net S2_din loc=p2;
net S2_wrb loc=p19;
net S2_csb loc=p15;
net S2_initb loc=p38;
net S2_done loc=p40;
net S2_progb loc=p39;
net S2_cclk loc=p16;
net S2_m<0> loc=p36;
net S2_d<0> loc=p2;
net S2_d<1> loc=p4;
net S2_d<2> loc=p5;
net S2_d<3> loc=p6;
net S2_d<4> loc=p7;
net S2_d<5> loc=p8;
net S2_d<6> loc=p9;
net S2_d<7> loc=p10;

Flash RAM
net fd<0> loc=p2;
net fd<1> loc=p4;
net fd<2> loc=p5;
net fd<3> loc=p6;
net fd<4> loc=p7;
net fd<5> loc=p8;
net fd<6> loc=p9;
net fd<7> loc=p10;
net fa<0> loc=p1;
net fa<1> loc=p64;
net fa<2> loc=p63;
net fa<3> loc=p62;
net fa<4> loc=p61;
net fa<5> loc=p60;
net fa<6> loc=p59;
net fa<7> loc=p58;
net fa<8> loc=p45;
net fa<9> loc=p44;
net fa<10> loc=p57;
net fa<11> loc=p43;
net fa<12> loc=p56;
net fa<13> loc=p46;
net fa<14> loc=p47;
net fa<15> loc=p52;
net fa<16> loc=p51;
net fa<17> loc=p48;
net frstb loc=p50; # Flash reset
net foeb loc=p12; # Flash output-enable
net fweb loc=p49; # Flash write-enable
net fceb loc=p11; # Flash chip-enable

DIP and pushbutton switches
net dipsw<1> loc=p47;

March 17, 2004 (Version 1.1) 13

XSA Flash Programming and SpartanII Configuration

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

net dipsw<2> loc=p52;
net dipsw<3> loc=p51;
net dipsw<4> loc=p48;

7-segment LEDs
net s<0> loc=p10;
net s<1> loc=p2;
net s<2> loc=p9;
net s<3> loc=p8;
net s<4> loc=p5;
net s<5> loc=p7;
net s<6> loc=p6;
net dp loc=p4;

programmable oscillator
net clk loc=p17;

parallel port
net ppd<0> loc=p33;
net ppd<1> loc=p32;
net ppd<2> loc=p31;
net ppd<3> loc=p27;
net ppd<4> loc=p25;
net ppd<5> loc=p24;
net ppd<6> loc=p23;
net ppd<7> loc=p22;
net pps<3> loc=p34;
net pps<4> loc=p20;
net pps<5> loc=p35;

March 17, 2004 (Version 1.1) 14

	XSA Flash Programming and SpartanII Configuration
	Using Flash with the XSA Board
	The Flash Programming Interface
	The SpartanII-Flash Configuration Circuit
	Listing 1: VHDL code for the Flash programming interface.
	Listing 2: Pin assignments for the Flash programming interface.
	Listing 3: VHDL code for the SpartanII-Flash configuration circuit.
	Listing 4: Pin assignments for the SpartanII-Flash configuration circuit.

