
8051 Cross Assembler User's Manual

MetaLink Corporation

Chandler, Arizona

January 27, 1996

1

MetaLink Corporation
P.O. BOX 1329

Chandler, Arizona 85244-1329
(602) 926-0797

TELEX: 4998050 MTLNK
FAX: (602) 926-1198

PURCHASE TERMS AND CONDITIONS

Since MetaLink Corporation does business and is located solely in the State of Arizona,
such orders or agreements and the rights of the parties hereunder shall be governed by the
laws of the State of Arizona.

LIMITEDWARRANTY: METALINKMAKES NOWARRANTIES OTHER THANTHOSE
CONTAINED HEREIN AND METALINK EXPRESSLY DISCLAIMS ANY AND ALL
IMPLIED WARRANTIES, INCLUDING ANY WARRANTY OF FITNESS FOR A PAR-
TICULAR PURPOSE OR OF MERCHANTABILITY.

The foregoing limited warranty shall not apply unless Buyer has paid for in full the MetaLink
products. Updates to the MetaLink Assembler User's Manual and MetaLink Assembler
software are available free to Registered Buyer upon request for a one (1) year period from
the invoice date.

2

NOTICE

MetaLink Corp. reserves the right to make improvements in the software product described
in this manual as well as the manual itself at any time and without notice.

DISCLAIMER OF ALL WARRANTIES AND LIABILITY

METALINK CORP. MAKES NO WARRANTIES, EITHER EXPRESSED OR IMPLIED,
WITH RESPECT TO THIS MANUAL OR WITH RESPECT TO THE SOFTWARE DE-
SCRIBED IN THIS MANUAL, ITS QUALITY, PERFORMANCE, MERCHANTABIL-
ITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. METALINK CORP. SOFT-
WARE IS SOLD OR LICENSED "AS IS". IN NO EVENT SHALL METALINK CORP. BE
LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES RESULTING FROM
ANY DEFECT IN THE SOFTWARE.

Copyright (c) 1984, 1985, 1986, 1987, 1988, 1989, 1990 MetaLink Corp.

All rights are reserved. This manual may not, in whole or part, be copied, photocopied,
reproduced, translated, or reduced to any electronic medium or machine readable form
without the prior agreement and written permission of MetaLink Corp.

MS-DOS is a trademark of Microsoft, Inc.

IBM is a registered trademark of IBM Corp.

Intel is a registered trademark of Intel Corp.

MetaLink is a trademark of MetaLink Corp.

Chapter 1

8051 Overview

1.1 Introduction

The 8051 series of microcontrollers are highly integrated single chip microcomputers with
an 8-bit CPU, memory, interrupt controller, timers, serial I/O and digital I/O on a single
piece of silicon. The current members of the 8051 family of components include:

� 80C152JA/JB/JC/JD, 83C152JA/JC, 80C157

� 80C154, 83C154, 85C154

� 8044, 8344, 8744

� 80C451, 83C451, 87C451

� 80C452, 83C452, 87C452

� 8051, 8031, 8751, 80C51, 80C31, 87C51

� 80512, 80532

� 80515, 80535, 80C535, 80C515

� 80C517, 80C537

� 80C51FA, 83C51FA, 87C51FA, 83C51FB, 87C51FB, 83C51FC, 87C51FC

� 8052, 8032, 8752

� 80C321, 80C521, 87C521, 80C541, 87C541

� 8053, 9761, 8753

� 80C552, 83C552, 87C552

� 80C652, 83C652, 87C652

� 83C654, 87C654

� 83C751, 87C751

� 83C752, 87C752

� 80C851, 83C851

4 Chap. 1: 8051 Overview

All members of the 8051 series of microcontrollers share a common architecture. They all
have the same instruction set, addressing modes, addressing range and memory spaces. The
primary di�erences between di�erent 8051 based products are the amount of memory on
chip, the amount and types of I/O and peripheral functions, and the component's technology
(see Table 1.1).

In the brief summary of the 8051 architecture that follows, the term 8051 is used to mean
collectively all available members of the 8051 family. Please refer to reference (1) for a
complete description of the 8051 architecture and the speci�cations for all the currently
available 8051 based products.

1.2 8051 Architecture

The 8051 is an 8-bit machine. Its memory is organized in bytes and practically all its
instruction deal with byte quantities. It uses an Accumulator as the primary register for
instruction results. Other operands can be accessed using one of the four di�erent addressing
modes available: register implicit, direct, indirect or immediate. Operands reside in one of
the �ve memory spaces of the 8051.

The �ve memory spaces of the 8051 are: ProgramMemory, External Data Memory, Internal
Data Memory, Special Function Registers and Bit Memory.

The Program Memory space contains all the instructions, immediate data and constant
tables and strings. It is principally addressed by the 16-bit Program Counter (PC), but
it can also be accessed by a few instructions using the 16-bit Data Pointer (DPTR). The
maximum size of the Program Memory space is 64K bytes. Several 8051 family members
integrate on-chip some amount of either masked programmed ROM or EPROM as part of
this memory space (refer to Table 1.1).

The External Data Memory space contains all the variables, bu�ers and data structures that
can't �t on-chip. It is principally addressed by the 16-bit Data Pointer (DPTR), although
the �rst two general purpose register (R0,R1) of the currently selected register bank can
access a 256-byte bank of External Data Memory. The maximum size of the External Data
Memory space is 64Kbytes. External data memory can only be accessed using the indirect
addressing mode with the DPTR, R0 or R1.

The Internal Data Memory space is functionally the most important data memory space.
In it resides up to four banks of general purpose registers, the program stack, 128 bits of the
256-bit memory, and all the variables and data structures that are operated on directly by
the program. The maximum size of the Internal Data Memory space is 256-bytes. However,
di�erent 8051 family members integrate di�erent amounts of this memory space on chip (see
Amnt of RAM in Table 1.1). The register implicit, indirect and direct addressing modes
can be used in di�erent parts of the Internal Data Memory space.

The Special Function Register space contains all the on-chip peripheral I/O registers as well
as particular registers that need program access. These registers include the Stack Pointer,
the PSW and the Accumulator. The maximum number of Special Function Registers (SFRs)
is 128, though the actual number on a particular 8051 family member depends on the
number and type of peripheral functions integrated on-chip (see Table 1.1). The SFRs all
have addresses greater than 127 and overlap the address space of the upper 128 bytes of
the Internal Data Memory space. The two memory spaces are di�erentiated by addressing

Chap. 1: 8051 Overview 5

mode. The SFRs can only be accessed using the Direct addressing mode while the upper
128 bytes of the Internal Data Memory (if integrated on-chip) can only be accessed using
the Indirect addressing mode.

The Bit Memory space is used for storing bit variables and
ags. There are speci�c instruc-
tions in the 8051 that operate only in the Bit Memory space. The maximum size of the
Bit Memory space is 256-bits. 128 of the bits overlap with 16-bytes of the Internal Data
Memory space and 128 of the bits overlap with 16 Special Function Registers. Bits can only
be accessed using the bit instructions and the Direct addressing mode.

The 8051 has a fairly complete set of arithmetic and logical instructions. It includes an 8X8
multiply and an 8/8 divide. The 8051 is particularly good at processing bits (sometimes
called Boolean Processing). Using the Carry Flag in the PSW as a single bit accumulator,
the 8051 can move and do logical operations between the Bit Memory space and the Carry
Flag. Bits in the Bit Memory space can also be used as general purpose
ags for the test
bit and jump instructions.

Except for the MOVE instruction, the 8051 instructions can only operate on either the
Internal Data Memory space or the Special Function Registers. The MOVE instruction
operates in all memory spaces, including the External Memory space and Program Memory
space.

Program control instructions include the usual unconditional calls and jumps as well as
conditional relative jumps based on the Carry Flag, the Accumulator's zero state, and the
state of any bit in the Bit Memory space. Also available is a Compare and Jump if Not
Equal instruction and a Decrement Counter and Jump if Not Zero loop instruction. See
Chapter 4 for a description of the complete 8051 instruction set.

1.3 Summary of the 8051 Family of Components

1.4 References

1. Intel Corp., 8-Bit Embedded Controllers, 1990.

2. Siemens Corp., Microcontroller Component 80515, 1985.

3. AMD Corp., Eight-Bit 80C51 Embedded Processors, 1990.

4. Signetics Corp., Microcontroller Users' Guide, 1989.

6 Chap. 1: 8051 Overview

Component Tech. ROM ROM RAM # of Serial I/O Type
(Kbytes) Type (bytes) SFRs Serial I/O Type

8031 HMOS 0 { 128 21 Start/Stop Async
8051 HMOS 4 Masked 128 21 Start/Stop Async
8751 HMOS 4 EPROM 128 21 Start/Stop Async
8053 HMOS 8 Masked 128 21 Start/Stop Async
9761 HMOS 8 EPROM 128 21 Start/Stop Async
8751 HMOS 8 EPROM 128 21 Start/Stop Async

80C31 CMOS 0 { 128 21 Start/Stop Async
80C51 CMOS 4 Masked 128 21 Start/Stop Async
87C51 CMOS 4 EPROM 128 21 Start/Stop Async
8032 HMOS 0 { 256 26 Start/Stop Async
8052 HMOS 8 Masked 256 26 Start/Stop Async
8752 HMOS 8 EPROM 256 26 Start/Stop Async

80C32 CMOS 0 { 256 26 Start/Stop Async
80C52 CMOS 8 Masked 256 26 Start/Stop Async
87C52 CMOS 8 EPROM 256 26 Start/Stop Async
8044 HMOS 4 Masked 192 34 HDLC/SDLC
8344 HMOS 0 { 192 34 HDLC/SDLC
8744 HMOS 4 EPROM 192 34 HDLC/SDLC
80535 HMOS 0 { 256 41 Start/Stop Async
80515 HMOS 8 Masked 256 41 Start/Stop Async

80C535 CHMOS 0 { 256 41 Start/Stop Async
80C515 CHMOS 8 Masked 256 41 Start/Stop Async
80532 HMOS 0 { 128 28 Start/Stop Async
80512 HMOS 4 Masked 128 28 Start/Stop Async

80C152 CHMOS 0 { 256 56 CSMA/CD
83C152 CHMOS 8 Masked 256 56 CSMA/CD
80C154 CMOS 0 { 256 27 Start/Stop Async
83C154 CMOS 16 Masked 256 27 Start/Stop Async
85C154 CMOS 16 EPROM 256 27 Start/Stop Async

80C51FA CHMOS 0 { 256 47 Start/Stop Async
83C51FA CHMOS 8 Masked 256 47 Start/Stop Async
87C51FA CHMOS 8 EPROM 256 47 Start/Stop Async
83C51FB CHMOS 16 Masked 256 47 Start/Stop Async
87C51FB CHMOS 16 EPROM 256 47 Start/Stop Async
83C51FB CHMOS 32 Masked 256 47 Start/Stop Async
87C51FB CHMOS 32 EPROM 256 47 Start/Stop Async
80C537 CHMOS 0 { 256 41 Start/Stop Async
80C517 CHMOS 8 Masked 256 82 Start/Stop Async
80C451 CMOS 0 { 128 24 Parallel I/F
83C451 CMOS 4 Masked 128 24 Parallel I/F
87C451 CMOS 4 EPROM 128 24 Parallel I/F
80C452 CHMOS 0 { 256 55 U.P.I.
83C452 CHMOS 8 { 256 55 U.P.I.
87C452 CHMOS 8 { 256 55 U.P.I.
80C552 CMOS 0 { 256 54 Start/Stop Async
83C552 CMOS 8 Masked 256 54 Start/Stop Async
87C552 CMOS 8 EPROM 256 54 Start/Stop Async
80C652 CMOS 0 { 256 24 Start/Stop Async
83C652 CMOS 8 Masked 256 24 Start/Stop Async
87C652 CMOS 8 EPROM 256 24 Start/Stop Async
83C654 CMOS 16 Masked 256 24 Start/Stop Async
87C654 CMOS 16 EPROM 256 24 Start/Stop Async
83C752 CMOS 2 Masked 64 25 I2C
87C752 CMOS 2 EPROM 64 25 I2C
83C751 CMOS 2 Masked 64 20 I2C
87C751 CMOS 2 EPROM 64 20 I2C
80C521 CMOS 0 { 256 26 Start/Stop Async
80C321 CMOS 8 Masked 256 26 Start/Stop Async
87C521 CMOS 8 EPROM 256 26 Start/Stop Async
80C541 CMOS 16 Masked 256 26 Start/Stop Async
87C541 CMOS 16 EPROM 256 26 Start/Stop Async
80C851 CMOS 0 { 128 21 Start/Stop Async
83C851 CMOS 4 Masked 128 21 Start/Stop Async

Table 1.1: 8051 variants.

Chapter 2

8051 CROSS ASSEMBLER OVERVIEW

2.1 Introduction

The 8051 Cross Assembler takes an assembly language source �le created with a text editor
and translates it into a machine language object �le. This translation process is done in
two passes over the source �le. During the �rst pass, the Cross Assembler builds a symbol
table from the symbols and labels used in the source �le. It's during the second pass that
the Cross Assembler actually translates the source �le into the machine language object
�le. It is also during the second pass that the listing is generated.

The following is a discussion of the syntax required by the Cross Assembler to generate
error free assemblies.

2.2 Symbols

Symbols are alphanumeric representations of numeric constants, addresses, macros, etc. The
legal character set for symbols is the set of letters, both upper and lower case (A..Z,a..z), the
set of decimal numbers (0..9) and the special characters, question mark (?) and underscore
(). To ensure that the Cross Assembler can distinguish between a symbol and a number,
all symbols must start with either a letter or special character (? or). The following are
examples of legal symbols:

PI

Serial_Port_Buffer

LOC_4096

?_?_?

In using a symbol, the Cross Assembler converts all letters to upper case. As a result, the
Cross Assembler makes no distinction between upper and lower case letters. For example,
the following two symbols would be seen as the same symbol by the Cross Assembler:

Serial_Port_Buffer

SERIAL_PORT_BUFFER

Symbols can be de�ned only once. Symbols can be up to 255 characters in length, though
only the �rst 32 are signi�cant. Therefore, for symbols to be unique, they must have a
unique character pattern within the �rst 32 characters. In the following example, the �rst
two symbols would be seen by the Cross Assembler as duplicate symbols, while the third
and fourth symbols are unique.

BEGINNING_ADDRESS_OF_CONSTANT_TABLE_1

8 Chap. 2: 8051 CROSS ASSEMBLER OVERVIEW

BEGINNING_ADDRESS_OF_CONSTANT_TABLE_2

CONSTANT_TABLE_1_BEGINNING_ADDRESS

CONSTANT_TABLE_2_BEGINNING_ADDRESS

There are certain symbols that are reserved and can't be de�ned by the user. These reserved
symbols are listed in Appendix C and include the assembler directives, the 8051 instruction
mnemonics, implicit operand symbols, and the following assembly time operators that have
alphanumeric symbols: EQ, NE, GT, GE, LT, LE, HIGH, LOW, MOD, SHR, SHL, NOT,
AND, OR and XOR.

The reserved implicit operands include the symbols A, AB, C, DPTR, PC, R0, R1, R2, R3,
R4, R5, R6, R7, AR0, AR1, AR2, AR3, AR4, AR5, AR6 and AR7. These symbols are used
primarily as instruction operands. Except for AB, C, DPTR or PC, these symbols can also
be used to de�ne other symbols (see EQU directive in Chapter 5).

The following are examples of illegal symbols with an explanation of why they are illegal:

1ST_VARIABLE (Symbols can not start with a number.)

ALPHA# (Illegal character "#" in symbol.)

MOV (8051 instruction mnemonic)

LOW (Assembly operator)

DATA (Assembly directive)

2.3 Labels

Labels are special cases of symbols. Labels are used only before statements that have phys-
ical addresses associated with them. Examples of such statements are assembly language
instructions, data storage directives (DB and DW), and data reservation directives (DS and
DBIT). Labels must follow all the rules of symbol creation with the additional requirement
that they be followed by a colon. The following are legal examples of label uses:

TABLE_OF_CONTROL_CONSTANTS:

DB 0,1,2,3,4,5 (Data storage)

MESSAGE: DB 'HELP' (Data storage)

VARIABLES: DS 10 (Data reservation)

BIT_VARIABLES: DBIT 16 (Data reservation)

START: MOV A,#23 (Assembly language instruction)

2.4 Assembler Controls

Assembler controls are used to control where the Cross Assembler gets its input source �le,
where it puts the object �le, and how it formats the listing �le. Table 2.1 summarizes the
assembler controls available. Refer to Chapter 6 for a detailed explanation of the controls.

As can be seen in Table 2.1, all assembler controls are prefaced with a dollar sign ($). No
spaces or tabs are allowed between the dollar sign and the body of the control. Also, only
one control per line is permitted. However, comments can be on the same line as a control.
The following are examples of assembler controls:

$TITLE(8051 Program Ver. 1.0)

$LIST

$PAGEWIDTH(132)

Chap. 2: 8051 CROSS ASSEMBLER OVERVIEW 9

$DATE(date) Places date in page header
$EJECT Places a form feed in listing
$INCLUDE(�le) Inserts �le in source program
$LIST Allows listing to be output
$NOLIST Stops outputting the listing
$MOD51 Uses 8051 prede�ned symbols
$MOD52 Uses 8052 prede�ned symbols
$MOD44 Uses 8044 prede�ned symbols
$NOMOD No prede�ned symbols used
$OBJECT(�le) Places object output in �le
$NOOBJECT No object �le is generated
$PAGING Break output listing into pages
$NOPAGING Print listing w/o page breaks
$PAGELENGTH(n) No. of lines on a listing page
$PAGEWIDTH(n) No. of columns on a listing page
$PRINT(�le) Places listing output in �le
$NOPRINT Listing will not be output
$SYMBOLS Append symbol table to listing
$NOSYMBOLS Symbol table will not be output
$TITLE(string) Places string in page header

Table 2.1: Cross Assembler controls.

10 Chap. 2: 8051 CROSS ASSEMBLER OVERVIEW

EQU De�ne symbol
DATA De�ne internal memory symbol
IDATA De�ne indirectly addressed internal memory symbol
XDATA De�ne external memory symbol
BIT De�ne internal bit memory symbol
CODE De�ne program memory symbol
DS Reserve bytes of data memory
DBIT Reserve bits of bit memory
DB Store byte values in program memory
DW Store word values in program memory
ORG Set segment location counter
END End of assembly language source �le
CSEG Select program memory space
DSEG Select internal memory data space
XSEG Select external memory data space
ISEG Select indirectly addressed internal
BSEG Select bit addressable memory space memory space
USING Select register bank
IF Begin conditional assembly block
ELSE Alternative conditional assembly block
ENDIF End conditional assembly block

Table 2.2: Cross Assembler directives.

2.5 Assembler Directives

Assembler directives are used to de�ne symbols, reserve memory space, store values in
program memory and switch between di�erent memory spaces. There are also directives
that set the location counter for the active segment and identify the end of the source �le.
Table 2.2 summarizes the assembler directives available. These directives are fully explained
in Chapter 5.

Only one directive per line is allowed, however comments may be included. The following
are examples of assembler directives:

TEN EQU 10

RESET CODE 0

ORG 4096

2.6 8051 Instruction Mnemonics

The standard 8051 Assembly Language Instruction mnemonics plus the generic CALL and
JMP instructions are recognized by the Cross Assembler and are summarized in Table 2.3.
See Chapter 4 for the operation of the individual instructions.

When the Cross Assembler sees a generic CALL or JMP instruction, it will try to translate
the instruction into its most byte e�cient form. The Cross Assembler will translate a CALL
into one of two instructions (ACALL or LCALL) and it will translate a generic JMP into one

Chap. 2: 8051 CROSS ASSEMBLER OVERVIEW 11

ACALL Absolute call ADD Add
ADDC Add with carry AJMP Absolute jump
ANL Logical and CJNE Compare & jump if not equal
CLR Clear CPL Complement
DA Decimal adjust DEC Decrement
DIV Divide DJNZ Decrement & jump if not zero
INC Increment JB Jump if bit set
JBC Jump & clear bit if bit set JC Jump if carry set
JMP Jump JNB Jump if bit not set
JNC Jump if carry not set JNZ Jump if accum. not zero
JZ Jump if accumulator zero LCALL Long call
LJMP Long jump MOV Move
MOVC Move code MOVX Move external
MUL Multiply NOP No operation
ORL Inclusive or POP Pop stack
PUSH Push stack RET Return
RETI Return from interrupt RL Rotate left
RLC Rotate left thru carry RR Rotate right
RRC Rotate right thru carry SETB Set bit
SJMP Short jump SUBB Subtract with borrow
SWAP Swap nibbles XCH Exchange bytes
XCHD Exchange digits XRL Exclusive or
CALL Generic call

Table 2.3: 8051 instruction set mnemonics.

12 Chap. 2: 8051 CROSS ASSEMBLER OVERVIEW

of three instructions (SJMP, AJMP or LJMP). The choice of instructions is based on which
one is most byte e�cient. The generic CALL or JMP instructions saves the programmer
the trouble of determining which form is best.

However, generic CALLs and JMPs do have their limitations. While the byte e�ciency
algorithm works well for previously de�ned locations, when the target location of the CALL
or JMP is a forward location (a location later on in the program), the assembler has no
way of determining the best form of the instruction. In this case the Cross Assembler
simply puts in the long version (LCALL or LJMP) of the instruction, which may not be
the most byte e�cient. NOTE that the generic CALLs and JMPs must not be used for the
751/752 device as LCALL and LJMP are not legal instructions for those devices. Instead
use ACALL and AJMP explicitly.

For instructions that have operands, the operands must be separated from the mnemonic
by at least one space or tab. For instructions that have multiple operands, each operand
must be separated from the others by a comma.

Two addressing modes require the operands to be preceded by special symbols to designate
the addressing mode. The AT sign (@) is used to designate the indirect addressing mode. It
is used primarily with Register 0 and Register 1 (R0, R1), but is can also be used with the
DPTR in the MOVX and the Accumulator in MOVC and JMP @A+DPTR instructions.
The POUND sign (#) is used to designate an immediate operand. It can be used to preface
either a number or a symbol representing a number.

A third symbol used with the operands actually speci�es an operation. The SLASH (/) is
used to specify that the contents of a particular bit address is to be complemented before
the instruction operation. This is used with the ANL and ORL bit instructions.

Only one assembly language instruction is allowed per line. Comments are allowed on the
same line as an instruction, but only after all operands have been speci�ed. The following
are examples of instruction statements:

START: LJMP INIT

MOV @R0,Serial_Port_Buffer

CJNE R0 , #TEN, INC_TEN

ANL C,/START_FLAG

CALL GET_BYTE

RET

2.7 Bit Addressing

The period (.) has special meaning to the Cross Assembler when used in a symbol. It is
used to explicitly specify a bit in a bit-addressable symbol. For example, it you wanted to
specify the most signi�cant bit in the Accumulator, you could write ACC.7, where ACC
was previously de�ned as the Accumulator address. The same bit can also be selected using
the physical address of the byte it's in. For example, the Accumulator's physical address
is 224. The most signi�cant bit of the Accumulator can be selected by specifying 224.7. If
the symbol ON was de�ned to be equal to the value 7, you could also specify the same bit
by either ACC.ON or 224.ON.

Chap. 2: 8051 CROSS ASSEMBLER OVERVIEW 13

2.8 ASCII Literals

Printable characters from the ASCII character set can be used directly as an immediate
operand, or they can used to de�ne symbols or store ASCII bytes in Program Memory.
Such use of the ASCII character set is called ASCII literals. ASCII literals are identi�ed
by the apostrophe (') delimiter. The apostrophe itself can be used as an ASCII literal. In
this case, use two apostrophes in a row. Below are examples of using ASCII literals.

MOV A,#'m' ;Load A with 06DH (ASCII m)

QUOTE EQU '''' ;QUOTE defined as 27H (ASCII single quote)

DB '8051' ;Store in Program Memory

2.9 Comments

Comments are user de�ned character strings that are not processed by the Cross Assembler.
A comment begins with a semicolon (;) and ends at the carriage return/line feed pair that
terminates the line. A comment can appear anywhere in a line, but it has to be the last
�eld. The following are examples of comment lines:

; Begin initialization routine here

$TITLE(8051 Program Vers. 1.0) ;Place version number here

TEN EQU 10 ;Constant

; Comment can begin anywhere in a line

MOV A,Serial_Port_Buffer ; Get character

2.10 The Location Counter

The Cross Assembler keeps a location counter for each of the �ve segments (code, internal
data, external data, indirect internal data and bit data). Each location counter is initialized
to zero and can be modi�ed using Assembler Directives described in Chapter 5.

The dollar sign ($) can be used to specify the current value of the location counter of the
active segment. The following are examples of how this can be used:

JNB FLAG,$;Jump on self until flag is reset

CPYRGHT: DB 'Copyright, 1983'

CPYRGHT_LENGTH

EQU $-CPYRGHT-1 ;Calculate length of copyright message

2.11 Syntax Summary

Since the Cross Assembler essentially translates the source �le on a line by line basis, certain
rules must be followed to ensure the translation process is done correctly. First of all, since
the Cross Assembler's line bu�er is 256 characters deep, there must always be a carriage
return/line feed pair within the �rst 256 columns of the line.

A legal source �le line must begin with either a control, a symbol, a label, an instruction
mnemonic, a directive, a comment or it can be null (just the carriage return/line feed pair).
Any other beginning to a line will be
agged as an error.

14 Chap. 2: 8051 CROSS ASSEMBLER OVERVIEW

Radix Designator Legal Digits Maximum Legal Number

Binary B 0,1 1111111111111111B

Octal O,Q 0,1,2,3,4,5, 177777O
6,7 177777Q

Decimal D,(default) 0,1,2,3,4,5, 65535D
6,7,8,9 65535

Hexadecimal H 0,1,2,3,4,5, 0FFFFH
6,7,8,9,A,B,
C,D,E,F

Table 2.4: Cross Assembler number representations.

While a legal source �le line must begin with one of the above items, the item doesn't have
to begin in the �rst column of the line. It only must be the �rst �eld of the line. Any
number (including zero) of spaces or tabs, up to the maximum line size, may precede it.

Comments can be placed anywhere, but they must be the last �eld in any line.

2.12 Numbers and Operators

The Cross Assembler accepts numbers in any one of four radices: binary, octal, decimal and
hexadecimal. To specify a number in a speci�c radix, the number must use the correct digits
for the particular radix and immediately following the number with its radix designator.
Decimal is the default radix and the use of its designator is optional. An hexadecimal
number that would begin with a letter digit must be preceded by a 0 (zero) to distinguish it
from a symbol. The internal representation of numbers is 16-bits, which limits the maximum
number possible. Table 2.4 summarizes the radices available.

No spaces or tabs are allowed between the number and the radix designator. The letter
digits and radix designators can be in upper or lower case. The following examples list the
decimal number 2957 in each of the available radices:

101110001101B (Binary)

5615o or 5615Q (Octal)

2957 or 2957D (Decimal)

0B8DH, 0b8dh (Hexadecimal)

When using radices with explicit bit symbols, the radix designator follows the byte portion
of the address as shown in the following examples:

0E0H.7 Bit seven of hexadecimal address 0E0

200Q.ON Bit ON of octal address 200

The Cross Assembler also allows assembly time evaluation of arithmetic expressions up to
thirty-two levels of embedded parentheses. All calculations use integer numbers and are
done in sixteen bit precision.

The relational operators test the speci�ed values and return either a True or False. False
is represented by a zero value, True is represented by a non zero value (the True condition

Chap. 2: 8051 CROSS ASSEMBLER OVERVIEW 15

OPERATOR SYMBOL OPERATION

+ Addition
Unary positive

- Subtraction
Unary negation (2's complement)
Multiplication

/ Integer division (no remainder)
MOD Modulus (remainder of integer division)
SHR Shift right
SHL Shift left
NOT Logical negation (1's complement)
AND Logical and
OR Inclusive or
XOR Exclusive or
LOW Low order 8-bits
HIGH High order 8-bits
EQ, = Relational equal
NE, <> Relational not equal
GT, > Relational greater than
GE, >= Relational greater than or equal
LT, < Relational less than
LE, <= Relational less than or equal

() Parenthetical statement

Table 2.5: Cross Assembler arithmetic and relational operations.

actually returns a 16-bit value with every bit set; i.e., 0FFFFH). The relational operators
are used primarily with the Conditional Assembly capability of the Cross Assembler.

Table 2.5 lists the operations available while Table 2.6 lists the operations precedence in
descending order. Operations with higher precedence are done �rst. Operations with equal
precedence are evaluated from left to right.

OPERATION PRECEDENCE

(,) HIGHEST
HIGH,LOW
,/,MOD,SHR,SHL
+,-
EQ,LT,GT,LE,GE,NE,=,<,>,<=,>=,<>
NOT
AND
OR,XOR LOWEST

Table 2.6: Cross Assembler operator precedence.

16 Chap. 2: 8051 CROSS ASSEMBLER OVERVIEW

The following are examples of all the available operations and their result:

HIGH(0AADDH) will return a result of 0AAH

LOW(0AADDH) will return a result of 0DDH

7*4 will return a result of 28

7/4 will return a result of 1

7 MOD 4 will return a result of 3

1000B SHR 2 will return a result of 0010B

1010B SHL 2 will return a result of 101000B

10+5 will return a result of 15

+72 will return a result of 72

25-17 will return a result of 8

-1 will return a result of 1111111111111111B

NOT 1 will return a result of 1111111111111110B

7 EQ 4, 7 = 4 will return a result of 0

7 LT 4, 7 < 4 will return a result of 0

7 GT 4, 7 > 4 will return a result of 0FFFFH

7 LE 4, 7 <= 4 will return a result of 0

7 GE 4, 7 >= 4 will return a result of 0FFFFH

7 NE 4, 7 <> 4 will return a result of 0FFFFH

1101B AND 0101B will return a result of 0101B

1101B OR 0101B will return a result of 1101B

1101B XOR 0101B will return a result of 1000B

2.13 Source File Listing

The source �le listing displays the results of the Cross Assembler translation. Every line of
the listing includes a copy of the original source line as well as a line number and the Cross
Assembler translation.

For example, in translating the following line taken from the middle of a source �le:

TRANS: MOV R7,#32 ;Set up pointer

the listing will print:

002F 7920 152 TRANS: MOV R1,#32 ;Set up pointer

The '002F' is the current value of the location counter in hexadecimal. The '7920' is the
translated instruction, also in hexadecimal. The '152' is the decimal line number of the
current assembly. After the line number is a copy of the source �le line that was translated.

Another example of a line in the listing �le is as follows:

015B 13 =1 267 +2 RRC A

Here we see two additional �elds. The '=1' before the line number gives the current nesting
of include �les. The '+2' after the line number gives the current macro nesting. This line
essentially says that this line comes from a second level nesting of a macro that is part of
an include �le.

Another line format that is used in the listing is that of symbol de�nition. In this case the
location counter value and translated instruction �elds described above are replaced with
the de�nition of the symbol. The following are examples of this:

Chap. 2: 8051 CROSS ASSEMBLER OVERVIEW 17

00FF 67 MAX_NUM EQU 255

REG 68 COUNTER EQU R7

The '00FF' is the hexadecimal value of the symbol MAX NUM. Again, '67'is the decimal
line number of the source �le and the remainder of the �rst line is a copy of the source �le.
In the second line above, the 'REG' shows that the symbol COUNTER was de�ned to be
a general purpose register.

Optionally, a listing can have a page header that includes the name of the �le being assem-
bled, title of program, date and page number. The header and its �elds are controlled by
speci�c Assembler Controls (see Chapter 6).

The default case is for a listing to be output as a �le on the default drive with the same name
as the entered source �le and an extension of .LST. For example, if the source �le name
was PROGRAM.ASM, the listing �le would be called PROGRAM.LST. Or if the source
�le was called MODULE1, the listing �le would be stored as MODULE1.LST. The default
can be changed using the $NOPRINT and $PRINT() Assembler Controls (see Chapter 6).

2.14 Object File

The 8051 Cross Assembler also creates a machine language object �le. The format of the
object �le is standard Intel Hexadecimal. This Hexadeciaml �le can be used to either
program EPROMs using standard PROM Programmers for prototyping, or used to pattern
masked ROMs for production.

The default case is for the object �le to be output on the default drive with the same name
as the �rst source �le and an extension of .HEX. For example, if the source �le name was
PROGRAM.ASM, the object �le would be called PROGRAM.HEX. Or if the source �le
was called MODULE1, the object �le would be stored as MODULE1.HEX. The default can
be changed using the $NOOBJECT and $OBJECT() Assembler Controls (see Chapter 6).

18 Chap. 2: 8051 CROSS ASSEMBLER OVERVIEW

Chapter 3

RUNNING THE 8051 CROSS ASSEMBLER ON PC-DOS/MS-DOS
SYSTEMS

3.1 Cross Assembler Files

The
oppy disk you receive with this manual is an 8 sector, single-sided, double density
disk. This distribution disk will contain the following �les:

ASM51.EXE The Cross Assembler program itself
MOD152 Source �le for the $MOD152 control
MOD154 Source �le for the $MOD154 control
MOD252 Source �le for the $MOD252 control
MOD44 Source �le for the $MOD44 control
MOD451 Source �le for the $MOD451 control
MOD452 Source �le for the $MOD452 control
MOD51 Source �le for the $MOD51 control
MOD512 Source �le for the $MOD512 control
MOD515 Source �le for the $MOD515 control
MOD517 Source �le for the $MOD517 control
MOD52 Source �le for the $MOD52 control
MOD521 Source �le for the $MOD521 control
MOD552 Source �le for the $MOD552 control
MOD652 Source �le for the $MOD652 control
MOD751 Source �le for the $MOD751 control
MOD752 Source �le for the $MOD752 control
MOD851 Source �le for the $MOD851 control

There will also be one or more �les with an extension of .ASM. These are sample programs.
Listings of these programs can be found in Appendix A.

DON'T USE THE DISTRIBUTION DISK. MAKE WORKING AND BACKUP COPIES
FROM THE DISTRIBUTION DISK AND THEN STORE THE DISTRIBUTION DISK
IN A SAFE PLACE.

3.2 Minimum System Requirements

With DOS 2.0 or later - 96K RAM 1 Floppy Disk Drive

20 Chap. 3: RUNNING THE 8051 CROSS ASSEMBLER ON PC-DOS/MS-DOS SYSTEMS

3.3 Running the Cross Assembler

Once you've created an 8051 assembly language source text �le in accordance with the
guidelines in Chapter 2, you are now ready to run the Cross Assembler. Make sure your
system is booted and the DOS prompt (A>) appears on the screen. Place the disk with
the 8051 Cross Assembler on it in the drive and simply type (in all the following examples,
the symbol <CR> is used to show where the ENTER key was hit):

ASM51<CR>

If the 8051 Cross Assembler disk was placed in a drive other than the default drive, the
drive name would have to be typed �rst. For example, if the A drive is the default drive,
and the 8051 Cross Assembler is in the B drive, you would then type:

B:ASM51<CR>

After loading the program from the disk, the program's name, its version number and
general copyright information will be dis- played on the screen. The Cross Assembler then
asks for the source �le name to begin the assembly process.

Source file drive and name [.ASM]:

At this point, if you have only one
oppy disk drive and the 8051 Cross Assembler and
source �les are on separate disks, remove the disk with the 8051 Cross Assembler on it and
replace it with your source �le disk.

Next, enter the source �le name. If no extension is given, the Cross Assembler will assume
an extension of .ASM. If no drive is given, the Cross Assembler will assume the default
drive. Since in every case where no drive is given, the Cross Assembler assumes the default
drive, it is generally a good practice to change the default drive to the drive with your
source �les.

An alternative method for entering the source �le is in the command line. In this case, after
typing in ASM51, type in a space and the source �le name (again if no extension is given,
source �le on the command line:

A>ASM51 B:CONTROL.A51<CR>

After the source �le name has been accepted, the Cross Assembler will begin the translation
process. As it starts the �rst pass of its two pass process, it will print on the screen:

First pass

At the completion of the �rst pass, and as it starts its second pass through the source �le,
the Cross Assembler will display:

Second pass

When second pass is completed, the translation process is done and the Cross Assembler
will print the following message:

ASSEMBLY COMPLETE, XX ERRORS FOUND

XX is replaced with the actual number of errors that were found. Disk I/O may continue
for a while as the Cross Assembler appends the symbol table to the listing �le.

Chap. 3: RUNNING THE 8051 CROSS ASSEMBLER ON PC-DOS/MS-DOS SYSTEMS 21

3.4 Example Running the Cross Assembler

The following is an example of an actual run. The Cross Assembler will take the source �le
SAMPLE.ASM from Drive A (default drive).

Again, the symbol <CR> is used to show where the ENTER key was hit.

A>ASM51<CR>

8 0 5 1 C R O S S A S S E M B L E R

Version 1.2

(c) Copyright 1984, 1985, 1986, 1987, 1988, 1989, 1990

MetaLink Corporation

Source file drive and name [.ASM]: sample<CR>

First pass

Second pass

ASSEMBLY COMPLETE, 0 ERRORS FOUND

3.5 DOS Hints and Suggestions

If you are using DOS 2.0 or later, you may want to use the BREAK ON command before you
run the Cross Assembler. This will allow you to abort (Ctrl-Break) the Cross Assembler at
any time. Otherwise, you will only be able to abort the Cross Assembler after it completes
a pass through the source �le. If you are assembling a large �le, this could cause you a
several minute wait before the Cross Assembler aborts.

The reason for this it that the default condition for DOS to recognizes a Ctrl-Break is
when the program (in this case the Cross Assembler) does keyboard, screen or printer I/O.
Unfortunately, the assembler does this very rarely (once each pass). By using the BREAK
ON command, DOS will recognize a Ctrl- Break for all I/O, including disk I/O. Since the
Cross Assembler is constantly doing disk I/O, with BREAK ON you can abort almost
immediately by hitting the Ctrl-Break keys.

So much for the good news. However, aborting a program can cause some undesirable
side-e�ects. Aborting a program while �les are open causes DOS to drop some information
about the open �les. This results in disk sectors being allocated when they are actually
free. Your total available disk storage shrinks. You should make the practice of running
CHKDSK with the /F switch periodically to recover these sectors.

The Cross Assembler run under DOS 2.0 or later supports redirection. You can specify the
redirection on the command line. Use the following form:

22 Chap. 3: RUNNING THE 8051 CROSS ASSEMBLER ON PC-DOS/MS-DOS SYSTEMS

ASM51 <infile >outfile

"in�le" and "out�le" can be any legal �le designator. The Cross Assembler will take its
input from the "in�le" instead of the keyboard and will send its output to "out�le" instead
of the screen.

Note that redirection of input in ASM51 is redundant since the assembler is an absolute
assembler and has no command line options other than the �le name argument.

Output redirection is useful for speeding up the assembly process. Because assembly-time
errors are directed to std err in DOS, an error listing cannot be redirected to a �le

To make the .lst �le serve as an error-only �le, use the Cross Assembler Controls $PRINT
(create a list �le) $NOLIST (turn the listing o�). Use the Cross Assembler Controls
$NOSYMBOLS to further compress the error-only listing resulting from the manipula-
tion of the list �le controls. See Chapter 6 for more information. The errors will be listed
in the .lst �le, as usual.

If the control $NOPRINT (see Chapter 6) is active, all error messages are send to the screen.

3.6 References

1. IBM Corp., Disk Operating System, Version 1.10, May 1982.

2. IBM Corp., Disk Operating System, Version 2.00, January 1983.

Chapter 4

8051 INSTRUCTION SET

4.1 Notation

Below is an explanation of the column headings and column contents of the 8051 Instruction
Set Summary Table Table 4.1 that follows in this chapter.

MNEMONIC: The MNEMONIC column contains the 8051 Instruction Set Mnemonic
and a brief description of the instruction's operation.

OPERATION: The OPERATION column describes the 8051 Instruction Set in unam-
biguous symbology. Following are the de�nitions of the symbols used in this column.

24 Chap. 4: 8051 INSTRUCTION SET

<n:m> Bits of a register inclusive. For example, PC<10:0>
means bits 0 through 10 inclusive of the PC. Bit 0 is
always the least signi�cant bit.

+ Binary addition
- Binary 2s complement subtraction
/ Unsigned integer division
X Unsigned integer multiplication
� Binary complement (1s complement)
^ Logical And
v Inclusive Or
v Exclusive Or
> Greater than
<> Not equal to
= Equals
(Is written into. For example, A + SOper -> A means

the result of the binary addition between A and the
Source Operand is written into A.

A The 8-bit Accumulator Register
AC The Auxiliary Carry Flag in the Program Status Word
CF The Carry Flag in the Program Status Word
DOper The Destination Operand used in the instruction
DPTR 16-bit Data Pointer
Intrupt Active Flag Internal Flag that holds o� interrupts until the Flag is

cleared
Jump Relative to PC A Jump that can range between -128 bytes and +127

bytes from the PC value of the next instruction
Paddr A 16-bit Program Memory address
PC The 8051 Program Counter. This 16-bit register points

to the byte in the Program Memory space that is
fetched as part of the instruction stream.

PM(addr) Byte in Program Memory space pointed to by addr
Remainder Integer remainder of unsigned integer division
SOper The Source Operand used in the instruction
SP 8-bit Stack Pointer
STACK The Last In First Out data structure that is controlled

by the 8-bit Stack Pointer (SP). Sixteen bit quantities
are pushed on the stack low byte �rst.

DEST ADDR MODE/SRC ADDR MODE: These two columns specify the Destina-
tion and Source Addressing Modes, respectively, that are available for each instruction.

Chap. 4: 8051 INSTRUCTION SET 25

AB The Accumulator-B Register pair.
Accumulator Operand resides in the accumulator.
Bit Direct Operand is the state of the bit speci�ed by the Bit

Memory address.
Carry Flag Operand is the state of the 1-bit Carry
ag in the Pro-

gram Status Word (PSW).
Data Pointer Operand resides in the 16-bit Data Pointer Register.
Direct Operand is the contents of the speci�ed 8-bit Internal

Data Memory address from 0 (00H) to 127 (7FH) or a
Special Function Register address.

Indirect Operand is the contents of the address contained in the
register speci�ed.

Immediate Operand is the next sequential byte after the instruc-
tion in Program Memory space.

Prog Direct 16-bit address in Program Memory Space.
Prog Indir Operand in ProgramMemory Space is the address con-

tained in the register speci�ed.
Register Operand is the contents of the register speci�ed.
Stack Operand is on the top of the Stack.

ASSEMBLY LANGUAGE FORM: This column contains the correct format of the
instructions that are recognized by the Cross Assembler.

A Accumulator.
AB Accumulator-B Register pair.
C Carry Flag.
Baddr Bit Memory Direct Address.
Daddr Internal Data Memory or Special Function Register Di-

rect Address.
data 8-bit constant data.
data16 16-bit constant data.
DPTR 16-bit Data Pointer Register.
PC 16-bit Program Counter.
Paddr 16-bit Program Memory address.
Ri Indirect Register. R0 or R1 are the only indirect

registers.
Ro� 8-bit o�set for Relative Jump.
Rn Implicit Register. Each register bank has 8 general

purpose registers, designated R0, R1, R2, R3, R4, R5,
R6, R7.

HEX OPCODE: This column gives the machine language hexadecimal opcode for each
8051 instruction.

B: This column gives the number of bytes in each 8051 instruction.

C: This column gives the number of cycles of each 8051 instruction. The time value of a
cycle is de�ned as 12 divided by the oscillator frequency. For example, if running an
8051 family component at 12 MHz, each cycle takes 1 microsecond.

PSW: This column identi�es which condition code
ags are a�ected by the operation of
the individual instructions. The condition code
ags available on the 8051 are the
Carry Flag, CF, the Auxiliary Carry Flag, AC, and the Over
ow Flag, OV.

26 Chap. 4: 8051 INSTRUCTION SET

It should be noted that the PSW is both byte and bit directly addressable. Should
the PSW be the operand of an instruction that modi�es it, the condition codes could
be changed even if this column states that the instruction doesn't a�ect them.

0 Condition code is cleared
1 Condition code is set

Condition code is modi�ed by instruction
- Condition code is not a�ected by instruction

4.2 8051 Instruction Set Summary

Mnemonic Operation Dest Src Assembly Hex B C PSW
Addr Addr Language Code CF AC OV
Mode Mode Form

ACALL
2K in Page (11 bits) PC + 2)STACK Prog Dir ACALL Paddr see 2 2 - - -
Absolute Call SP + 2)SP note 1

Paddr<10:0>)PC<10:0>
PC<15:11>)PC<15:11>

ADD
Add Operand to A + SOper)A Accum Immed ADD A,#data 24 2 1 * * *
Accum Accum Direct ADD A,Daddr 25 2 1

Accum Indirect ADD A,@Ri 26,27 1 1
Accum Reg ADD A,Rn 28-2F 1 1

ADDC
Add Operand with A + SOper + C)A Accum Immed ADDC A,#data 34 2 1 * * *
Carry to Accum Accum Direct ADDC A,Daddr 35 2 1

Accum Indirect ADDC A,@Ri 36,37 1 1
Accum Reg ADDC A,Rn 38-3F 1 1

AJMP see
2K in Page (11 bits) Paddr<10:0>)PC<10:0> Prog Dir AJMP Paddr note 2 2 2 - - -
Absolute Jump PC<15:11>)PC<15:11>
ANL
Logical AND of Source SOper ^ DOper)DOper Direct Accum ANL Daddr,A 52 2 1 - - -
Operand with Direct Immed ANL Daddr,#data 53 3 2
Destination Operand Accum Immed ANL A,#data 54 2 1

Accum Direct ANL A,Daddr 55 2 1
Accum Indirect ANL A,@Ri 56,57 1 1
Accum Reg ANL A,Rn 58-5F 1 1

Logical AND of Source SOper ^ CF)CF CF Bit Dir ANL C,Baddr 82 2 2 * - -
Operand with CF
Logical AND of Source �SOper ^ CF)CF CF Bit Dir ANL C,/Baddr B0 2 2 * - -
Operand Complemented
with CF
CJNE
Compare Operands and Jump Relative to PC if Accum Immed CJNE A,#data,Ro� B4 3 2 * - -
Jump Relative if not DOper <>SOper Accum Direct CJNE A,Daddr,Ro� B5 3 2 see
Equal Indirect Immed CJNE @Ri,#data,Ro� B6,B7 3 2 note 3

Reg Immed CJNE Rn,#data,Ro� B8-BF 3 2
CLR
Clear Accum 0)A Accum CLR A E4 1 1 - - -
Clear CF 0)CF CF CLR C C3 1 1 0 - -
Clear Bit Operand 0)DOper Bit Dir CLR Baddr C2 2 1 - - -
CPL
Complement Accum �A)A Accum CPL A F4 1 1 - - -
Complement CF �CF)CF CF CPL C B3 1 1 * - -
Complement Bit Operand �DOper)DOper Bit Dir CPL Baddr B2 2 1 - - -
DA
Decimal Adjust If (A<3:0>>9) v AC Accum DA A D4 1 1 * - -
Accum for then A<3:0>+6)A<3:0> see
Addition If (A<7:4>>9) v CF note 4

then A<7:4>+6)A<7:4>
DEC
Decrement Operand DOper - 1)DOper Accum DEC A 14 1 1 - - -

Direct DEC Daddr 15 2 1
Indirect DEC @Ri 16,17 1 1
Reg DEC Rn 18-1F 1 1

Table 4.1: 8051 instruction set.

Chap. 4: 8051 INSTRUCTION SET 27

Mnemonic Operation Dest Src Assembly Hex B C PSW
Addr Addr Language Code CF AC OV
Mode Mode Form

DIV
Divide Accum by A / B)A AB DIV AB 84 1 4 0 - *
B Reg Remainder)B see

note 5
DJNZ
Decrement Operand and DOper - 1)DOper Direct DJNZ Daddr,Ro� D5 3 2 - - -
Jump Relative if Not If DOper <>0 then Jump Reg DJNZ Rn,Ro� D8-DF 2 2
Zero Relative to PC
INC
Increment Operand DOper + 1)DOper Accum INC A 04 1 1 - - -

Direct INC Daddr 05 2 1
Indirect INC @Ri 06,07 1 1
Reg INC Rn 08-0F 1 1
Data Ptr INC DPTR A3 1 2

JB
Jump Relative if Bit If DOper = 1 then Jump Bit Dir JB Baddr,Ro� 20 3 2 - - -
Operand is Set Relative to PC
JBC
Jump Relative if Bit If DOper = 1 then Bit Dir JBC Baddr,Ro� 10 3 2 * * *
Operand is Set and 0)DOper and Jump see
Clear Bit Operand Relative to PC note 6
JC
Jump Relative if If CF = 1 then Jump CF JC Ro� 40 2 2 - - -
CF is Set Relative to PC
JMP
Jump Indirect DPTR<15:0>+ A<7:0> Prog Indir JMP @A+DPTR 73 1 2 - - -

)PC<15:0>
JNB
Jump Relative if Bit If DOper = 0 then Jump Bit Dir JNB Baddr,Ro� 30 3 2 - - -
Operand is Clear Relative to PC
JNC
Jump Relative if If CF = 0 then Jump CF JNC Ro� 50 2 2 - - -
CF is Clear Relative to PC
JNZ
Jump Relative if the If A<7:0><>0 then Accum JNZ Ro� 70 2 2 - - -
Accum is Not Jump Relative to PC
Zero
JZ
Jump Relative if the If A<7:0>= 0 then Accum JZ Ro� 60 2 2 - - -
Accum is Zero Jump Relative to PC
LCALL
Long (16 bits) Call PC + 3)STACK Prog Dir LCALL Paddr 12 3 2 - - -

SP + 2)SP
Paddr<15:0>)PC<15:0>

LJMP
Long (16 bits) Paddr<15:0>)PC<15:0> Prog Dir LJMP Paddr 02 3 2 - - -
Absolute Jump
MOV
Move Source Operand SOper)DOper Accum Immed MOV A,#data 74 2 1 - - -
to Destination Accum Direct MOV A,Daddr E5 2 1
Operand Accum Indirect MOV A,@Ri E6,E7 1 1

Accum Reg MOV A,Rn E8-EF 1 1
Direct Accum MOV Daddr,A F5 2 1
Direct Immed MOV Daddr,#data 75 3 2
Direct Direct MOV Daddr,Daddr 85 3 2
Direct Indirect MOV Daddr,@Ri 86,87 2 2
Direct Reg MOV Daddr,Rn 88-8F 2 2
Indirect Accum MOV @Ri,A F6,F7 1 1

SOper)DOper Indirect Immed MOV @Ri,#data 76,77 2 1
Indirect Direct MOV @Ri,Daddr A6,A7 2 2
Reg Accum MOV Rn,A F8-FF 1 1
Reg Immed MOV Rn,#data 78-7F 2 1
Reg Direct MOV Rn,Daddr A8-AF 2 2
Data Ptr Immed MOV DPTR,#data16 90 3 2

Move CF to Bit CF)DOper Bit Dir CF MOV Baddr,C 92 2 2 - - -
Destination Operand
Move Bit Destination DOper)CF CF Bit Dir MOV C,Baddr A2 2 1 * - -
Operand to CF
MOVC
Move byte from PM(DPTR<15:0>+ A<7:0>) Accum Prog Ind MOVC A,@A+DPTR 93 1 2 - - -
Program Memory to)A<7:0>

PM(PC<15:0>+ A<7:0>) Accum Prog Ind MOVC A,@A+PC 83 1 2 - - -
)A<7:0>

MOVX
Move byte from SOper)A Accum Indirect MOVX A,@Ri E2,E3 1 2 - - -
External Data Memory Accum Indirect MOVX A,@DPTR E0 1 2
to the Accum
Move byte in the A)DOper Indirect Accum MOVX @Ri,A F2,F3 1 2 - - -
Accum to Indirect Accum MOVX @DPTR,A F0 1 2
External Data Memory
MUL
Multiply Accum A X B)B,A AB MUL AB A4 1 4 0 - *
by B Reg (see note 7)

Table 4.1: 8051 instruction set (continued).

28 Chap. 4: 8051 INSTRUCTION SET

Mnemonic Operation Dest Src Assembly Hex B C PSW

Addr Addr Language Code CF AC OV
Mode Mode Form

NOP
No Operation NOP 00 1 1 - - -
ORL
Logical Inclusive OR SOper v DOper)DOper Direct Accum ORL Daddr,A 42 2 1 - - -
of Source Operand Direct Immed ORL Daddr,#data 43 3 2
with Destination Accum Immed ORL A,#data 44 2 1
Operand Accum Direct ORL A,Daddr 45 2 1

Accum Indirect ORL A,@Ri 46,47 1 1
Accum Reg ORL A,Rn 48-4F 1 1

Logical Inclusive OR SOper v CF)CF CF Bit Dir ORL C,Baddr 72 2 2 * - -
of Source Operand
with CF
Logical Inclusive OR �SOper v CF)CF CF Bit Dir ORL C,/Baddr A0 2 2 * - -
of Source Operand
Complemented with CF
POP
Pop Stack and Place STACK)DOper Direct Stack POP Daddr D0 2 2 - - -
in Destination Operand SP - 1)SP
PUSH
Push Source Operand SP + 1)SP Stack Direct PUSH Daddr C0 2 2 - - -
onto Stack SOper)STACK
RET
Return from STACK)PC<15:8> RET 22 1 2 - - -
Subroutine SP - 1)SP

STACK)PC<7:0>
SP - 1)SP

RETI
Return from STACK)PC<15:8> RETI 32 1 2 - - -
Interrupt Routine SP - 1)SP

STACK)PC<7:0>
SP - 1)SP
0)Intrupt Active Flag

RL
Rotate Accum A<6:0>)A<7:1> Accum RL A 23 1 1 - - -
Left One Bit A<7>)A<0>
RLC
Rotate Accum A<6:0>)A<7:1> Accum RLC A 33 1 1 * - -
Left One Bit Thru CF)A<0>
the CF A<7>)CF
RR
Rotate Accum A<7:1>)A<6:0> Accum RR A 03 1 1 - - -
Right One Bit A<0>)A<7>
RRC
Rotate Accum A<7:1>)A<6:0> Accum RRC A 13 1 1 * - -
Right One Bit Thru CF)A<7>
the CF A<0>)CF
SETB
Set Bit Operand 1)CF CF SETB C D3 1 1 1 - -

1)DOper Bit Dir SETB Baddr D2 2 1 - - -
SJMP
Short (8 bits) Jump Relative to PC SJMP Ro� 80 2 2 - - -
Relative Jump
SUBB
Subtract Operand with A - SOper - CF)A Accum Immed SUBB A,#data 94 2 1 * * *
Borrow from the Accum Direct SUBB A,Daddr 95 2 1
Accum Accum Indirect SUBB A,@Ri 96,97 1 1

Accum Reg SUBB A,Rn 98-9F 1 1
SWAP
Swap Nibbles within A<7:4>)A<3:0> Accum SWAP A C4 1 1 - - -
the Accum A<3:0>)A<7:4>
XCH
Exchange bytes of the SOper<7:0>)A<7:0> Accum Direct XCH A,Daddr C5 2 1 - - -
Accum and the A<7:0>)SOper<7:0> Accum Indirect XCH A,@Ri C6,C7 1 1
Source Operand Accum Reg XCH A,Rn C8-CF 1 1
XCHD
Exchange the Least SOper<3:0>)A<3:0> Accum Indirect XCHD A,@Ri D6,D7 1 1 - - -
Signi�cant Nibble of A<3:0>)SOper<3:0>
the Accum and
the Source Operand
XRL
Logical Exclusive OR SOper v DOper)DOper Direct Accum XRL Daddr,A 62 2 1 - - -
of Source Operand Direct Immed XRL Daddr,#data 63 3 2
with Destination Accum Immed XRL A,#data 64 2 1
Operand Accum Direct XRL A,Daddr 65 2 1

Accum Indirect XRL A,@Ri 66,67 1 1
Accum Reg XRL A,Rn 68-6F 1 1

Table 4.1: 8051 instruction set (continued).

Chapter 5

8051 CROSS ASSEMBLER DIRECTIVES

5.1 Introduction

The 8051 Cross Assembler Directives are used to de�ne symbols, reserve memory space,
store values in program memory, select various memory spaces, set the current segment's
location counter and identify the end of the source �le.

Only one directive per line is allowed, however comments may be included. The remaining
part of this chapter details the function of each directive.

5.2 Symbol De�nition Directives

5.2.1 EQU Directive

The EQUate directive is used to assign a value to a symbol. It can also be used to specify
user de�ned names for the implicit operand symbols prede�ned for the Accumulator (i.e.,
A) and the eight General Purpose Registers (i.e., R0 thru R7).

The format for the EQU directive is: symbol, followed by one or more spaces or tabs,
followed by EQU, followed by one or more spaces or tabs, followed by a number, arithmetic
expression, previously de�ned symbol (no forward references allowed) or one of the allowed
implicit operand symbols (e.g., A, R0, R1, R2, R3, R4, R5, R6, R7), followed by an optional
comment.

Below are examples of using the EQU Directive:

TEN EQU 10 ;Symbol equated to a number

COUNTER EQU R7 ;User defined symbol for the implicit

;operand symbol R7. COUNTER can now

;be used wherever it is legal to use

;R7. For example the instruction

;INC R7 could now be written INC COUNTER.

ALSO_TEN EQU TEN ;Symbol equated to a previously defined

;symbol.

FIVE EQU TEN/2 ;Symbol equated to an arithmetic exp.

A_REG EQU A ;User defined symbol for the implicit

;operand symbol A.

ASCII_D EQU 'D' ;Symbol equated to an ASCII literal

30 Chap. 5: 8051 CROSS ASSEMBLER DIRECTIVES

5.2.2 SET Directive

Similar to the EQU directive, the SET directive is used to assign a value or implicit operand
to a user de�ned symbol. The di�erence however, is that with the EQU directive, a symbol
can only be de�ned once. Any attempt to de�ne the symbol again will cause the Cross
Assembler to
ag it as an error. On the other hand, with the SET directive, symbols are
rede�neable. There is no limit to the number of times a symbol can be rede�ned with the
SET directive.

The format for the SET directive is: symbol, followed by one or more spaces or tabs,
followed by SET, followed by one or more spaces or tabs, followed by a number, arithmetic
expression, previously de�ned symbol (no forward references allowed) or one of the allowed
implicit operand symbols (e.g., A, R0, R1, R2, R3, R4, R5, R6, R7), followed by an optional
comment.

Below are examples of using the SET Directive:

POINTER SET R0 ;Symbol equated to register 0

POINTER SET R1 ;POINTER redefined to register 1

COUNTER SET 1 ;Symbol initialized to 1

COUNTER SET COUNTER+1 ;An incrementing symbol

5.2.3 BIT Directive

The BIT Directive assigns an internal bit memory direct address to the symbol. If the
numeric value of the address is between 0 and 127 decimal, it is a bit address mapped in
the Internal Memory Space. If the numeric value of the address is between 128 and 255, it
is an address of a bit located in one of the Special Function Registers. Addresses greater
than 255 are illegal and will be
agged as an error.

The format for the BIT Directive is: symbol, followed by one or more spaces or tabs,
followed by BIT, followed by one or more spaces or tabs, followed by a number, arithmetic
expression, or previously de�ned symbol (no forward references allowed), followed by an
optional comment.

Below are examples of using the BIT Directive:

CF BIT 0D7H ;The single bit Carry Flag in PSW

OFF_FLAG BIT 6 ;Memory address of single bit flag

ON_FLAG BIT OFF_FLAG+1 ;Next bit is another flag

5.2.4 CODE Directive

The CODE Directive assigns an address located in the Program Memory Space to the
symbol. The numeric value of the address cannot exceed 65535.

The format for the CODE Directive is: symbol, followed by one or more spaces or tabs,
followed by CODE, followed by one or more spaces or tabs, followed by a number, arithmetic
expression, or previously de�ned symbol (no forward references allowed), followed by an
optional comment.

Chap. 5: 8051 CROSS ASSEMBLER DIRECTIVES 31

Below are examples of using the CODE Directive:

RESET CODE 0

EXTI0 CODE RESET + (1024/16)

5.2.5 DATA Directive

The DATA Directive assigns a directly addressable internal memory address to the symbol.
If the numeric value of the address is between 0 and 127 decimal, it is an address of an
Internal Data Memory location. If the numeric value of the address is between 128 and 255,
it is an address of a Special Function Register. Addresses greater than 255 are illegal and
will be
agged as an error.

The format for the DATA Directive is: symbol, followed by one or more spaces or tabs,
followed by DATA, followed by one or more spaces or tabs, followed by a number, arithmetic
expression, or previously de�ned symbol (no forward references allowed), followed by an
optional comment.

Below are examples of using the DATA Directive:

PSW DATA 0D0H ;Defining the Program Status address

BUFFER DATA 32 ;Internal Data Memory address

FREE_SPAC DATA BUFFER+16 ;Arithmetic expression.

5.2.6 IDATA Directive

The IDATA Directive assigns an indirectly addressable internal data memory address to the
symbol. The numeric value of the address can be between 0 and 255 decimal. Addresses
greater than 255 are illegal and will be
agged as an error.

The format for the IDATA Directive is: symbol, followed by one or more spaces or tabs,
followed by IDATA, followed by one or more spaces or tabs, followed by a number, arithmetic
expression, or previously de�ned symbol (no forward references allowed), followed by an
optional comment.

Below are examples of using the IDATA Directive:

TOKEN IDATA 60

BYTE_CNT IDATA TOKEN + 1

ADDR IDATA TOKEN + 2

5.2.7 XDATA Directive

The XDATA Directive assigns an address located in the External Data Memory Space to
the symbol. The numeric value of the address cannot exceed 65535.

The format for the XDATA Directive is: symbol, followed by one or more spaces or tabs,
followed by XDATA, followed by one or more spaces or tabs, followed by a number, arith-
metic expression, or previously de�ned symbol (no forward references allowed), followed by
an optional comment.

Below are examples of using the XDATA Directive:

32 Chap. 5: 8051 CROSS ASSEMBLER DIRECTIVES

USER_BASE XDATA 2048

HOST_BASE XDATA USER_BASE + 1000H

5.3 Segment Selection Directives

There are �ve Segment Selection Directives: CSEG, BSEG, DSEG, ISEG, XSEG, one for
each of the �ve memory spaces in the 8051 architecture. The CSEG Directive is used to
select the Program Memory Space. The BSEG Directive is used to select the Bit Memory
Space. The DSEG Directive is used to select the directly addressable Internal Data Memory
Space. The ISEG is used to select the indirectly addressable Internal Data Memory Space.
The XSEG is used to select the External Data Memory Space.

Each segment has its own location counter that is reset to zero during the Cross Assembler
program initialization. The contents of the location counter can be overridden by using the
optional AT after selecting the segment.

The Program Memory Space, or CSEG, is the default segment and is selected when the
Cross Assembler is run.

The format of the Segment Selection Directives are: zero or more spaces or tabs, followed
by the Segment Selection Directive, followed by one or more spaces or tabs, followed by the
optional segment location counter override AT command and value, followed by an optional
comment.

The value of the AT command can be a number, arithmetic expression or previously de�ned
symbol (forward references are not allowed). Care should be taken to ensure that the
location counter does not advance beyond the limit of the selected segment.

Below are examples of the Segment Selection Directives:

DSEG ;Select direct data segment using

;current location counter value.

BSEG AT 32 ;Select bit data segment forcing

;location counter to 32 decimal.

XSEG AT (USER_BASE * 5) MOD 16 ;Arithmetic expressions can be

;used to specify location.

5.4 Memory Reservation and Storage Directives

5.4.1 DS Directive

The DS Directive is used to reserve space in the currently selected segment in byte units.
It can only be used when ISEG, DSEG or XSEG are the currently active segments. The
location counter of the segment is advanced by the value of the directive. Care should be
taken to ensure that the location counter does not advance beyond the limit of the segment.

The format for the DS Directive is: optional label, followed by one or more spaces or tabs,
followed by DS, followed by one or more spaces or tabs, followed by a number, arithmetic
expression, or previously de�ned symbol (no forward references allowed), followed by an
optional comment.

Below is an example of using the DS Directive in the internal Data Segment. If, for example,

Chap. 5: 8051 CROSS ASSEMBLER DIRECTIVES 33

the Data Segment location counter contained 48 decimal before the example below, it would
contain 104 decimal after processing the example.

DSEG ;Select the data segment

DS 32 ;Label is optional

SP_BUFFER: DS 16 ;Reserve a buffer for the serial port

IO_BUFFER: DS 8 ;Reserve a buffer for the I/O

5.4.2 DBIT Directive

The DBIT Directive is used to reserve bits within the BIT segment. It can only be used
when BSEG is the active segment. The location counter of the segment is advanced by the
value of the directive. Care should be taken to ensure that the location counter does not
advance beyond the limit of the segment.

The format for the DBIT Directive is: optional label, followed by one or more spaces or tabs,
followed by DBIT, followed by one or more spaces or tabs, followed by a number, arithmetic
expression, or previously de�ned symbol (no forward references allowed), followed by an
optional comment.

Below is an example of using the DBIT Directive:

BSEG ;Select the bit segment

DBIT 16 ;Label is optional

IO_MAP: DBIT 32 ;Reserve a bit buffer for I/O

5.4.3 DB Directive

The DB Directive is used to store byte constants in the Program Memory Space. It can
only be used when CSEG is the active segment.

The format for the DB Directive is: optional label, followed by one or more spaces or tabs,
followed by DB, followed by one or more spaces or tabs, followed by the byte constants that
are separated by commas, followed by an optional comment.

The byte constants can be numbers, arithmetic expressions, symbol values or ASCII literals.
ASCII literals have to be delimited by apostrophes ('), but they can be strung together
up to the length of the line.

Below are examples of using the DB Directive. If an optional label is used, its value will
point to the �rst byte constant listed.

COPYRGHT_MSG:

DB '(c) Copyright, 1984' ;ASCII Literal

RUNTIME_CONSTANTS:

DB 127,13,54,0,99 ;Table of constants

DB 17,32,239,163,49 ;Label is optional

MIXED: DB 2*8,'MPG',2*16,'abc' ;Can mix literals & no.

5.4.4 DW Directive

The DW Directive is used to store word constants in the Program Memory Space. It can
only be used when CSEG is the active segment.

34 Chap. 5: 8051 CROSS ASSEMBLER DIRECTIVES

The format for the DW Directive is: optional label, followed by one or more spaces or tabs,
followed by DW, followed by one or more spaces or tabs, followed by the word constants
that are separated by commas, followed by an optional comment.

The word constants can be numbers, arithmetic expressions, symbol values or ASCII literals.
ASCII literals must be delimited by apostrophes ('), but unlike the DB Directive, only a
maximum of two ASCII characters can be strung together. The �rst character is placed in
the high byte of the word and the second character is placed in the low byte. If only one
character is enclosed by the apostrophes, a zero will be placed in the high byte of the word.

Below are examples of using the DW Directive. If an optional label is used, its value will
point to the high byte of the �rst word constant listed.

JUMP_TABLE: DW RESET,START,END ;Table of addresses

DW TEST,TRUE,FALSE ;Optional label

RADIX: DW 'H',1000H ;1st byte contains 0

;2nd byte contains 48H (H)

;3rd byte contains 10H

;4th byte contains 0

5.5 Miscellaneous Directives

5.5.1 ORG Directive

The ORG Directive is used to specify a value for the currently active segment's location
counter. It cannot be used to select segments like the directives above. It can only be used
within a segment when the location counter needs to be changed. Care should be taken to
ensure that the location counter does not advance beyond the limit of the selected segment.

The format of the ORG Directive is: zero or more spaces or tabs, followed by ORG, followed
by one or more spaces or tabs, followed by a number, arithmetic expression, or previously
de�ned symbol (no forward references are allowed), followed by an optional comment.

Below are examples of the ORG directive.

ORG 1000H ;Location counter set at 4096 decimal

ORG RESET ;Previously defined symbol

ORG BASE + MODULE_NO ;Arithmetic expression

5.5.2 USING DIRECTIVE

The USING Directive is used to specify which of the four General Purpose Register banks
is used in the code that follows the directive. It allows the use of the prede�ned register
symbols AR0 thru AR7 instead of the register's direct addresses. It should be noted that
the actual register bank switching must still be done in the code. This directive simpli�es
the direct addressing of a speci�ed register bank.

The format of the USING Directive is: zero or more spaces or tabs, followed by USING,
followed by one or more spaces or tabs, followed by a number, arithmetic expression, or
previously de�ned symbol (no forward references are allowed), followed by an optional
comment.

Chap. 5: 8051 CROSS ASSEMBLER DIRECTIVES 35

The number, arithmetic expression, or previously de�ned symbol must result in a number
between 0 and 3 in order to specify one of the four register banks in the 8051.

The following table maps the speci�ed value in the USING directive with the direct addresses
of the prede�ned symbols.

Prede�ned USING Value
Symbol 0 1 2 3

AR0 0 8 16 24
AR1 1 9 17 25
AR2 2 10 18 26
AR3 3 11 19 27
AR4 4 12 20 28
AR5 5 13 21 29
AR6 6 14 22 30
AR7 7 15 23 31

Below are examples of the USING Directive:

USING 0 ;Select addresses for Bank 0

USING 1+1+1 ;Arithmetic expressions

5.5.3 END Directive

The END Directive is used to signal the end of the source program to the Cross Assembler.
Every source program must have one and only one END Directive. A missing END Direc-
tive, as well as text beyond the occurrence of the END Directive are not allowed and will
be
agged as errors.

The format of the END Directive is: zero or more spaces or tabs, followed by END, followed
by an optional comment. All text must appear in the source program before the occurrence
of the END Directive.

Below is an example of the END Directive:

END ;This is the End

5.6 Conditional Assembly Directives

5.6.1 IF, ELSE and ENDIF Directive

The IF, ELSE and ENDIF directives are used to de�ne conditional assembly blocks. A
conditional assembly block begins with an IF statement and must end with the ENDIF
directive. In between the IF statement and ENDIF directive can be any number of assembly
language statements, including directives, controls, instructions, the ELSE directive and
nested IF-ENDIF conditional assembly blocks.

The IF statement starts with the keyword IF, followed by one or more spaces or tabs,
followed by a number, arithmetic expression, or previously de�ned symbol (no forward ref-
erences are allowed), followed by an optional comment. The number, arithmetic expression
or symbol is evaluated and if found to be TRUE (non- zero), the assembly language state-
ments are translated up to the next ELSE or ENDIF directives. If the IF statement was

36 Chap. 5: 8051 CROSS ASSEMBLER DIRECTIVES

evaluated FALSE (zero), the assembly language statements are considered null up to the
next ELSE or ENDIF directives.

If an optional ELSE appears in the conditional assembly block, the assembly language state-
ments following are handled oppositely from the assembly language statements following
the IF statement. In other words, if the IF statement was evaluated TRUE, the statements
following it are translated, while the statements following the ELSE will be handled as if
they were null. On the other hand, if the IF statement was evaluated FALSE, only the
assembly language statements following the ELSE directive would be translated.

IF-ELSE-ENDIF conditional assembly blocks can be nested up to 255 levels deep. The
following are some examples of conditional assembly blocks. This �rst conditional assembly
block simply checks the symbol DEBUG. If DEBUG is non-zero, the MOV and CALL
instructions will be translated by the Cross Assembler.

IF (DEBUG)

MOV A,#25

CALL OUTPUT

ENDIF

The next example used the optional ELSE directive. If SMALL MODEL is zero, only the
statements following the ELSE directive will be translated.

IF (SMALL_MODEL)

MOV R0,#BUFFER

MOV A,@R0

ELSE

MOV R0,#EXT_BUFFER

MOVX A,@R0

ENDIF

The last example shows nested conditional assembly blocks. Conditional assembly blocks
can be nested up to 255 levels deep. Every level of nesting must have balanced IF-ENDIF
statements.

IF (VERSION > 10) \

CALL DOUBLE_PRECISION |

CALL UPDATE_STATUS _ |

IF (DEBUG) \ |

CALL DUMP_REGISTERS > Nested |

ENDIF _/ Block |

ELSE > Outer Block

CALL SINGLE_PRECISION |

CALL UPDATE_STATUS _ |

IF (DEBUG) \ |

CALL DUMP_REGISTERS > Nested |

ENDIF _/ Block |

ENDIF _/

Chapter 6

8051 CROSS ASSEMBLER CONTROLS

6.1 Introduction

Assembler controls are used to control where the Cross Assembler gets its input source �le,
where it stores the object �le, how it formats and where it outputs the listing.

All Assembler controls are prefaced with a dollar sign, ($). No spaces or tabs are allowed
between the dollar sign and the body of the control. Also, only one control per line is
permitted. Comments are allowed on the same line as an Assembler control.

There are two types of controls, Primary controls and General controls. Primary controls
can be invoked only once per assembly. If an attempt is made to change a previously invoked
primary control, the attempt is ignored. For example, if $NOPRINT is put on line 1 of
the source �le and $PRINT is put on line 2, the $PRINT control will be ignored and the
listing will not be output. General controls can be invoked any number of times in a source
program.

There are two legal forms for each Assembler control, the full form and the abbreviated
form. The two forms can be used inter- changeable in the source program.

Below is a description of each Assembler control. Assembler controls with common func-
tionality are grouped together.

6.2 Assembler Control Descriptions

6.2.1 $DATE(date)

Places the ASCII string enclosed by parenthesis in the date �eld of the page header. The
ASCII string can be from 0 to 9 characters long.

CONTROL: $DATE(date)

ABBREV: $DA(date)

TYPE: Primary

DEFAULT: No date in page header

EXAMPLES: $DATE(1-JUL-84)

$DA(7/22/84)

38 Chap. 6: 8051 CROSS ASSEMBLER CONTROLS

6.2.2 $DEBUG(�le) and $NODEBUG

These controls determine whether or not a MetaLink Absolute Object Module format �le
is created. The MetaLink Absolute Object Module format �le is used in conjunction with
MetaLink's MetaICE series of in-circuit-emulators. Among other advantages, it provides
powerful symbolic debug capability in the emulator debug environment. $NODEBUG spec-
i�es that a MetaLink Absolute Object Module �le will not be created. $DEBUG speci�es
that a MetaLink Absolute Object Module �le will be created. The $DEBUG control allows
any legal �le name to be speci�ed as the MetaLink Absolute Object Module �lename. If no
�lename is speci�ed, a default name is used. The default name used for the �le is the source
�le name root with a .DBG extension. If the $DEBUG control is used, both a MetaLink
Absolute Object Module �le and a standard Intel Hexadecimal format object �le can be
generated at the same time. Refer to the $OBJECT control description later in this chapter
for information on controlling the Hexadecimal format object �le output.

CONTROL: $DEBUG(file)

$NODEBUG

ABBREV: $DB(file)

$NODB

DEFAULT: $NODEBUG

TYPE: Primary

EXAMPLES: $DB(A:NEWNAME.ICE)

$DEBUG

$NOOBJECT

6.2.3 $EJECT

Places a form feed (ASCII 0CH) in the listing output. The $NOPAGING control will
override this control.

CONTROL: $EJECT

ABBREV: $EJ

DEFAULT: No form feeds in listing output

TYPE: General

EXAMPLES: $EJECT

$EJ

6.2.4 $INCLUDE(�le)

Inserts a �le in source program as part of the input source program. The �le �eld in this
control can be any legal �le designator. No extension is assumed, so the whole �le name
must be speci�ed. Any number of �les can be included in a source program. Includes can
be nested up to 8 level deep. It is important to note that this control inserts �les, it does
not chain or concatenate �les.

CONTROL: $INCLUDE(file)

ABBREV: $IC(file)

DEFAULT: No file included in source program

TYPE: General

EXAMPLES: $INCLUDE(B:COMMON.EQU

$IC(TABLES.ASM) ;Uses default drive

Chap. 6: 8051 CROSS ASSEMBLER CONTROLS 39

6.2.5 $LIST and $NOLIST

These controls determine whether or not the source program listing is output or not. $LIST
will allow the source program listing to be output. $NOLIST stops the source program
listing from being output. The $NOPRINT control overrides the $LIST control.

CONTROL: $LIST

$NOLIST

ABBREV: $LI

$NOLI

DEFAULT: $LIST

TYPE: General

EXAMPLES: $NOLIST ;This will cause the included

$INCLUDE(COMMON.TBL) ;file not to be listed

$LI ;Listing continues

6.2.6 $MOD and $NOMOD

Recognizes prede�ned special function register symbols in the source program. This saves
the user from having to de�ne all the registers in the source program. Appendix B lists the
symbols that are de�ned by these controls. $NOMOD disables the recognizing function.
These controls access �les of the same name that are included with the MetaLink 8051
CROSS ASSEMBLER distribution diskette. When a $MOD control is used in a source
program, it is important that the $MOD �le be available to the Cross Assembler. The
Cross Assembler �rst looks for the $MOD �le on the default drive, if it isn't found there,
the Cross Assembler looks for it on the A: drive. The components supported by each switch
are:

$MOD51: 8051, 8751, 8031, 80C51, 80C31, 87C51, 9761, 8053

$MOD52: 8052, 8032, 8752

$MOD44: 8044, 8344, 8744

$MOD515: 80515, 80535, 80C515, 80C535

$MOD512: 80512, 80532

$MOD517: 80C517, 80C537

$MOD152: 80C152, 83C152, 80C157

$MOD451: 80C451. 83C451, 87C451

$MOD452: 80C452, 83C452, 87C452

$MOD752: 83C752, 87C752

$MOD751: 83C751, 87C751

$MOD154: 83C514, 80C154, 85C154

$MOD252: 80C252, 83C252, 87C252, 80C51FA, 83C51FA, 87C51FA,

83C51FB, 87C51FB

$MOD521: 80C521, 80C321, 87C521, 80C541, 87C541

$MOD552: 80C552, 83C552, 87C552

$MOD652: 80C652, 83C652

$MOD851: 80C851, 83C851

CONTROL: $MOD51 $MOD52 $MOD44 $MOD152 $MOD515

$MOD512 $MOD451 $MOD452 $MOD751

$MOD752 $MOD154 $MOD252 $MOD521

$MOD552 $MOD652 $MOD517 $MOD851

$NOMOD

ABBREV:

DEFAULT: $NOMOD

40 Chap. 6: 8051 CROSS ASSEMBLER CONTROLS

TYPE: Primary

EXAMPLES: $MOD51 $MOD52 $MOD44 $MOD515 $MOD512

$MOD152 $MOD451 $MOD452 $MOD751

$MOD752 $MOD154 $MOD252 $MOD521

$MOD552 $MOD652 $MOD517 $MOD851

$NOMOD

6.2.7 $OBJECT(�le) and $NOOBJECT

These controls determine whether or not a standard Intel Hexadecimal format object �le is
created. $NOOBJECT speci�es that an object �le will not be created. $OBJECT speci�es
that an object �le will be created. If other than the default name is to be used for the
object �le, the $OBJECT control allows any legal �le name to be speci�ed as the object
�lename. The default name used for the object �le is the source �le name root with a .HEX
extension.

CONTROL: $OBJECT(file)

$NOOBJECT

ABBREV: $OJ(file)

$NOOJ

DEFAULT: $OBJECT(source.HEX)

TYPE: Primary

EXAMPLES: $OJ(A:NEWNAME.OBJ)

$NOOBJECT

6.2.8 $PAGING and $NOPAGING

These controls specify whether or not the output listing will be broken into pages or will
be output as one continuous listing. When the $NOPAGING control is used, the $EJECT
and $PAGELENGTH controls are ignored. With the $PAGING control, a form feed and
header line is inserted into the output listing whenever an $EJECT control is met, or
whenever the number of lines output on the current page exceeds the value speci�ed by
the $PAGELENGTH control. The header line contains source �le name, title (if $TITLE
control was used), date (if $DATE control was used) and page number.

CONTROL: $PAGING

$NOPAGING

ABBREV: $PI

$NOPI

DEFAULT: $PAGING

TYPE: Primary

EXAMPLES: $PAGING

$NOPI

6.2.9 $PAGELENGTH(n)

Sets the maximum number of lines, (n), on a page of the output listing. If the maximum is
exceeded, a form feed and page header is inserted in the output listing. This control allows
the number of lines per page to be set anywhere between 10 and 255. If the number of lines
speci�ed is less than 10, pagelength will be set to 10. If the number of lines speci�ed is
greater than 255, pagelength will be set to 255.

Chap. 6: 8051 CROSS ASSEMBLER CONTROLS 41

The $NOPAGING control will override this control.

CONTROL: $PAGELENGTH(n)

ABBREV: $PL(n)

DEFAULT: $PAGELENGTH(60)

TYPE: Primary

EXAMPLES: $PAGELENGTH(48)

$PL(58)

6.2.10 $PAGEWIDTH(n)

Sets the maximum number of characters, (n), on a line of the output listing. This control
allows the number of characters per line to be set anywhere between 72 and 132. If the
number speci�ed is less than 72, the pagewidth is set at 72. If the number speci�ed is
greater than 132, the pagewidth is set at 132. If the pagewidth is speci�ed between 72 and
100 and the line being output exceeds the pagewidth speci�cation, the line is truncated at
the speci�ed pagewidth and a carriage return/line feed pair is inserted in the listing. If the
pagewidth is speci�ed to be greater than 100 and the line being output exceed the pagewidth
speci�cation, a carriage return/line feed pair is inserted at the speci�ed pagewidth and the
line will continue to be listed on the next line beginning at column 80.

CONTROL: $PAGEWIDTH(n)

ABBREV: $PW(n)

DEFAULT $PAGEWIDTH(72)

TYPE: Primary

EXAMPLES: $PAGEWIDTH(132)

$PW(80)

6.2.11 $PRINT(�le) and $NOPRINT

These controls determine whether or not a listing �le is created. $NOPRINT speci�es that
a listing �le will not be created. $PRINT speci�es that an listing �le will be created. If
other than the default name is to be used for the listing �le, the $PRINT control allows any
legal �le name to be speci�ed as the listing �lename. The default name used for the listing
�le is the source �le name root with a .LST extension.

CONTROL: $PRINT(file)

$NOPRINT

ABBREV: $PR

$NOPR

DEFAULT: $PRINT(source.LST)

TYPE: Primary

EXAMPLES: $PRINT(A:CONTROL.OUT)

$NOPR

6.2.12 $SYMBOLS and $NOSYMBOLS

Selects whether or not the symbol table is appended to the listing output. $SYMBOLS
causes the symbol table to be sorted alphabetically by symbol, formatted and output to the
listing �le. Along with the symbol name, its value and type are output. Values are output
in hexadecimal. Types include NUMB (number), ADDR (address), REG (register symbol)

42 Chap. 6: 8051 CROSS ASSEMBLER CONTROLS

and ACC (accumulator symbol). If a symbol was of type ADDR, it segment is also output
as either C (code), D (data) or X (external). Other information listed with the symbols is
NOT USED (symbol de�ned but never referenced), UNDEFINED (symbol referenced but
never de�ned) and REDEFINEABLE (symbol de�ned using the SET directive). The type
and value listed for a REDEFINABLE symbol is that of its last de�nition in the source
program. $NOSYMBOLS does not output the symbol table.

CONTROL: $SYMBOLS

$NOSYMBOLS

ABBREV: $SB

$NOSB

DEFAULT: $SYMBOLS

TYPE: Primary

EXAMPLES: $SB

$NOSYMBOLS

6.2.13 $TITLE(string)

Places the ASCII string enclosed by the parenthesis in the title �eld of the page header. The
ASCII string can be from 0 to 64 characters long. If the string is greater than 64 characters
or if the width of the page will not support such a long title, the title will be truncated. If
parentheses are part of the string, they must be balanced.

CONTROL: $TITLE(string)

ABBREV: $TT(string)

DEFAULT: No title in page header

TYPE: Primary

EXAMPLES: $TITLE(SAMPLE PROGRAM V1.2)

$TT(METALINK (TM) CROSS ASSEMBLER)

Chapter 7

8051 CROSS ASSEMBLER MACRO PROCESSOR

7.1 Introduction

Macros are useful for code that is used repetitively throughout the program. It saves the
programmer the time and tedium of having to specify the code every time it is used. The
code is written only once in the macro de�nition and it can be used anywhere in the source
program any number of times by simply using the macro name.

Sometimes there is confusion between macros and subroutines. Subroutines are common
routines that are written once by the programmer and then accessed by CALLing them.
Subroutines are usually used for longer and more complex routines where the call/return
overhead can be tolerated. Macros are commonly used for simpler routines or where the
speed of in-line code is required.

7.2 Macro De�nition

Before a macro can be used, it �rst must be de�ned. The macro de�nition speci�es a
template that is inserted into the source program whenever the macro name is encountered.
Macro de�nitions can not be nested, but once a macro is de�ned, it can be used in other
macro de�nitions. Macros used this way can be nested up to nine levels deep.

The macro de�nition has three parts to it: 1) the macro header which speci�es the macro
name and its parameter list, 2) the macro body which is the part that is actually inserted
into the source program, and 3) the macro terminator.

The macro header has the following form:

name MACRO <parameter list>

The name �eld contains a unique symbol that it used to identify the macro. Whenever that
symbol is encountered in the source program, the Cross Assembler will automatically insert
the macro body in the source program at that point. The name must be a unique symbol
that follows all the rules of symbol formation as outlined in Chapter 2.

The MACRO �eld of the macro header contains the keyword MACRO. This is used to
notify the Cross Assembler that this is the beginning of a macro de�nition.

The <parameter list> �eld of the macro header lists anywhere from zero to 16 parameters
that are used in the macro body and are de�ned at assembly time. The symbols used in
the parameter list are only used by the Cross Assembler during the storing of the macro
de�nition. As a result, while symbols used in the parameter list must be unique symbols

44 Chap. 7: 8051 CROSS ASSEMBLER MACRO PROCESSOR

that follow all the the rules of symbol formation as outlined in Chapter 2, they can be
reissued in the parameter list of another macro de�nition without con
ict. Parameter list
items are separated from one another by a comma. The following are examples of macro
de�nition headers:

MULT_BY_16 MACRO (no parameters)

DIRECT_ADD MACRO DESTINATION,SOURCE (two parameters)

The macro body contains the template that will replace the macro name in the source pro-
gram. The macro body can contain instructions, directives, conditional assembly statements
or controls. As a matter of fact, the macro body can contain any legal Cross Assembler
construct as de�ned in Chapters 2, 4, 5 and 6.

There are two macro de�nition terminators: ENDM and EXITM. Every macro de�nition
must have an ENDM at the end of its de�nition to notify the Cross Assembler that the
macro de�nition is complete. The EXITM terminator is an alternative ending of the macro
that is useful with conditional assembly statements. When a EXITM is encountered in a
program, all remaining statements (to the ENDM) are ignored.

The following is an example of a macro de�nition that multiplies the Accumulator by 16:

MULT_BY_16 MACRO

RL A ;* 2

RL A ;* 4

RL A ;* 8

RL A ;* 16

ENDM

The following is an example of a macro that adds two numbers together. This could be
used by the programmer to do direct memory to memory adds of external variables (create
a virtual instruction).

DIRECT_ADDX MACRO DESTINATION,SOURCE (two parameters)

MOV R0,#SOURCE

MOVX A,@R0

MOV R1,A

MOV R0,#DESTINATION

MOVX A,@R0

ADD A,R1

MOVX @R0,A

ENDM

A �nal macro de�nition example shows the use of the EXITM macro terminator. If CMOS is
non-zero, the MOV and only the MOV instruction will be translated by the Cross Assembler.

IDLE MACRO

IF (CMOS)

MOV PCON,#IDL

EXITM

ENDIF

JMP $

ENDM

7.3 Special Macro Operators

There are four special macro operators that are de�ned below:

Chap. 7: 8051 CROSS ASSEMBLER MACRO PROCESSOR 45

%: when the PERCENT sign prefaces a symbol in the parameter list, the symbol's value
is passed to the macro's body instead of the symbol itself.

!: when the EXCLAMATION POINT precedes a character, that character is handled as a
literal and is passed to the macro body with the EXCLAMATION POINT removed.
This is useful when it is necessary to pass a delimiter to the macro body. For example,
in the following parameter list, the second parameter passed to the macro body would
be a COMMA (,):

GENERATE_INST 75,!,,STK_VALUE

&: when the AMPERSAND is used in the macro body, the symbols on both sides of it are
concatenated together and the AMPERSAND is removed.

;;: when double SEMI-COLONS are used in a macro de�nition, the comment preceded by
the double SEMI-COLONS will not be saved and thus will not appear in the listing
whenever the macro is invoked. Using the double SEMI-COLONS lowers the memory
requirement in storing the macro de�nitions and should be used whenever possible.

Examples of using the above special macro operators follow in the "Using Macros" section.

7.4 Using Macros

This section section discusses several situations that arise using macros and how to handle
them. In general the discussion uses examples to get the point across. First the macro
de�nition is listed, then the source line program that will invoke the macro and �nally how
the macro was expanded by the Cross Assembler.

7.4.1 NESTING MACROS

The following shows a macro nested to a depth of three. Remember, de�nitions cannot be
nested. Macros must be de�ned before they are used in other macro de�nitions.

;MACRO DEFINITIONS

GET_EXT_BYTE MACRO EXT_ADDR

MOV R0,#EXT_ADDR

MOVX A,@R0

ENDM

ADD_EXT_BYTES MACRO EXT_DEST,EXT_SRC

GET_EXT_BYTE EXT_DEST

MOV R1,A

GET_EXT_BYTE EXT_SRC

ADD A,R1

ENDM

ADD_DIRECT_BYTES MACRO DESTINATION,SOURCE

IF (SMALL_MODEL)

MOV A,SOURCE

ADD A,DESTINATION

MOV DESTINATION

46 Chap. 7: 8051 CROSS ASSEMBLER MACRO PROCESSOR

ELSE

ADD_EXT_BYTES DESTINATION,SOURCE

MOVX @R0,A

ENDIF

ENDM

;USAGE IN PROGRAM

ADD_DIRECT_BYTES 127,128

;TRANSLATED MACRO

30 +1 ADD_DIRECT_BYTES 127,128

31 +1 IF (SMALL_MODEL)

32 +1 MOV A,128

33 +1 ADD A,127

34 +1 MOV 127

35 +1 ELSE

36 +2 ADD_EXT_BYTES 127,128

37 +3 GET_EXT_BYTE 127

0100 787F 38 +3 MOV R0,#127

0102 E2 39 +3 MOVX A,@R0

0103 F9 40 +2 MOV R1,A

41 +3 GET_EXT_BYTE 128

0104 7880 42 +3 MOV R0,#128

0106 E2 43 +3 MOVX A,@R0

0107 29 44 +2 ADD A,R1

0108 F2 45 +1 MOVX @R0,A

46 +1 ENDIF

48

Two things should be pointed out from the above example. First, the order of the parameter
list is important. You must maintain the the order of parameters from the macro de�nition
if the Cross Assembler is to translate the macro correctly.

Secondly, in order to pass parameters to nested macros, simply use the same parameter
symbol in the parameter list of the de�nition. For example, the parameter DESTINA-
TION was passed properly to the nested macros ADD EXT BYTES and GET EXT BYTE.
This occurred because in the macro de�nition of ADD DIRECT BYTES, the parame-
ter DESTINATION was speci�ed in the parameter lists of both ADD EXT BYTES and
GET EXT BYTE.

LABELS IN MACROS You have two choices for specifying labels in a macro body. A
label can either be passed to the body as a parameter or it can be generated within the
body. The following example shows both ways.

;MACRO DEFINITION

MULTIPLE_SHIFT MACRO LABEL,LABEL_SUFFIX,COUNTER,N

COUNTER SET COUNTER+1 ;INCREMENT SUFFIX FOR NEXT

USAGE

LABEL: MOV R0,#N

Chap. 7: 8051 CROSS ASSEMBLER MACRO PROCESSOR 47

SHIFT&LABEL_SUFFIX: RL A

DJNZ R0,SHIFT&LABEL_SUFFIX

ENDM

;USAGE IN PROGRAM

MULTIPLE_SHIFT LOOP_SHIFT,%COUNT,COUNT,4

;TRANSLATED MACRO

15 +1 MULTIPLE_SHIFT LOOP_SHIFT,%COUNT,COUNT,4

0006 16 +1 COUNT SET COUNT+1

17 +1

0100 7804 18 +1 LOOP_SHIFT: MOV R0,#4

0102 23 19 +1 SHIFT5: RL A

0103 D8FD 20 +1 DJNZ R0,SHIFT5

22

Points to note in the above example: 1) the double semi-colon caused the comment not
to be listed in the translated macro; 2) the percent sign caused the value of COUNT (in
this case the value 5) to be passed to the macro body instead of the symbol; and 3) the
ampersand allowed two symbols to be concatenated to form the label SHIFT5.

48 Chap. 7: 8051 CROSS ASSEMBLER MACRO PROCESSOR

Chapter 8

8051 CROSS ASSEMBLER ERROR CODES

8.1 Introduction

When the Cross Assembler encounters an error in the source program, it will emit an error
message in the listing �le. If the $NOPRINT control has been invoked, the error message
will be output to the screen.

There are basically two types of errors that are encountered by the Cross Assembler, trans-
lation errors and I/O errors. I/O errors are usually fatal errors. However, whenever an error
is detected, the Cross Assembler makes every e�ort possible to continue with the assembly.

If it is possible to recover from the error and continue assembling, the Cross Assembler will
report the error, use a default condition and continue on its way. However, when a fatal
error is encountered, it is impossible for the Cross Assembler to proceed. In this case, the
Cross Assembler reports the error and then aborts the assembly process.

Fatal I/O error messages are displayed on the screen and are of the form:

FATAL ERROR opening <filename>

where <�lename> would be replaced with the �le designator initially entered or read from
the source program. The cause of this error is usually obvious, typically a typographical
error or the wrong drive speci�cation.

Another fatal I/O error message is:

FATAL ERROR writing to <type> file

where <type> would be replaced with either "listing" or "object". The cause of this error is
usually either a write protected disk or a full disk.

Translation error reports contain at least three lines. The �rst line is the source line in which
the error was detected, the second line is a pointer to the character, symbol, expression or
line that caused the error. The �nal line is the error message itself. There may be more
than one error message, depending on the number of errors in the source line. An example
of a source line with two errors in it follows:

0100 2323 26 START: MOV AB,@35

****--^---^

****ERROR #20: Illegal operand

****ERROR #20: Illegal operand

The errors are pointed out by the up-arrows ()̂. For every up- arrow there will be an
error message. Errors are ordered left to right, so the �rst error message corresponds to

50 Chap. 8: 8051 CROSS ASSEMBLER ERROR CODES

the left-most up-arrow and so on. The error message includes an error number and an
description of the error. The error number can be used as an index to the more detailed
error explanations that follow in this chapter.

After the Cross Assembler has completed its translation process, it will print an assembly
complete message:

ASSEMBLY COMPLETE, nn ERRORS FOUND

If it was an error free assembly, in place of the "nn" above the word "NO" will be output.
However, if errors were encountered during the assembly process, the "nn" will be replaced
with the number of errors that were found (up to a maximum of 50). In this case, an error
summary will follow in the listing �le with all the errors that were reported during the
assembly. An error summary looks like the following:

ERROR SUMMARY:

Line #26, ERROR #20: Illegal operand

Line #26, ERROR #20: Illegal operand

The same error message that occurred after the source line appears again prefaced by the
source line number to aid in tracking down the error in the source listing.

8.2 Explanation of Error Messages

8.2.1 ERROR #1: Illegal character

This error occurs when the Cross Assembler encounters a character that is not part of its
legal character set. The Cross Assembler character set can be found in Appendix D.

8.2.2 ERROR #2: Unde�ned symbol

This error occurs when the Cross Assembler tries to use a symbol that hasn't been de�ned.
The two most common reasons for this error are typographical errors and forward references.

8.2.3 ERROR #3: Duplicate symbol

This error occurs when a previously de�ned symbol or a reserved symbol is attempted to
be de�ned again. Refer to Appendix C for the reserved words. Also inspect the symbol in
the symbol table listing. If the symbol doesn't appear there, you are using a reserved word.
If the symbol does appear, its original de�nition will be listed.

8.2.4 ERROR #4: Illegal digit for radix

A digit was encountered that is not part of the legal digits for the radix speci�ed. Chapter
2 lists the legal digits for each radix available. Often this error occurs because a symbol
was started with a number instead of a letter, question mark, or underscore.

Chap. 8: 8051 CROSS ASSEMBLER ERROR CODES 51

8.2.5 ERROR #5: Number too large

The number speci�ed, or the returned value of the expression, exceeds 16-bit precision. The
largest value allowed is 65,535.

8.2.6 ERROR #6: Missing END directive

The source program must end with one and only one END directive. The END is placed
after all the assembly line statements.

8.2.7 ERROR #7: Illegal opcode/directive after label

The symbol after a label is not an opcode nor a directive that allows labels. The only
thing permitted on a line after a label is an instruction, the DS, DB or DW directives, or
a comment. If none of these are found, this error will be reported.

8.2.8 ERROR #8: Illegal assembly line

The assembly line doesn't begin with a symbol, label, instruction mnemonic, control, direc-
tive, comment or null line. No attempt is made to translate such a line.

8.2.9 ERROR #9: Text beyond END directive

The END directive must be the last line of the source program. Any text beyond the END
line will cause this error. Any such text is ignore. Text here is de�ned as any printable
ASCII characters.

8.2.10 ERROR #10: Illegal or missing expression

A number, symbol or arithmetic expression was expected, but it was either found to be
missing or the Cross Assembler was unable to evaluate it properly.

8.2.11 ERROR #11: Illegal or missing expression operator

An arithmetic operator was expected but it is either missing or it is not one of the legal
operators speci�ed in Chapter 2.

8.2.12 ERROR #12: Unbalanced parentheses

In evaluating an expression, the parentheses in the expression were found not to balance.

52 Chap. 8: 8051 CROSS ASSEMBLER ERROR CODES

8.2.13 ERROR #13: Illegal or missing expression value

In evaluating an expression, the Cross Assembler expected to �nd either a number or a
symbol, but it was either missing or illegal.

8.2.14 ERROR #14: Illegal literal expression

This error occurs when a null ASCII literal string is found. A null ASCII literal is nothing
more than two apostrophes together (") and is illegal.

8.2.15 ERROR #15: Expression stack over
ow

The expression stack has a depth of 32 values. The expression being evaluated exceeds this
depth. This is a very rare error. However, if you ever get it, divide the expression into two
or more expressions using the EQU directive.

8.2.16 ERROR #16: Division by zero

The expression being evaluated includes an attempt to divide by zero.

8.2.17 ERROR #17: Illegal bit designator

A bit designator address was speci�ed in the source program and it points to an illegal
bit address. A bit designator contains a byte address, followed by a PERIOD, followed by
the bit index into the byte address (e.g., ACC.7) as discussed in Chapter 2. This error
can occur for one of two reasons. First, if the number or a symbol that is used to specify
the byte address part of the bit designator is not a legal bit addressable address, ERROR
#17 will occur. Second, if the bit index into the byte address exceeds the number 7, again
ERROR #17 will be output.

8.2.18 ERROR #18: Target address exceeds relative address range

A Program Counter relative jump instruction (e.g., SJMP, JZ, JNC, etc.) was decoded
with the target address of the jump exceeding the maximum possible forward jump of 127
bytes or the maximum possible backward jump of 128 bytes.

8.2.19 ERROR #20: Illegal operand

The operand speci�ed is not a legal operand for the instruction. Review the legal operands
allowed for the instruction.

Chap. 8: 8051 CROSS ASSEMBLER ERROR CODES 53

8.2.20 ERROR #21: Illegal indirect register

R0 and R1 are the only primary legal indirect register. This error occurs when the indirect
addressing mode designator (@) is not followed by either R0, R1 or symbols that were
de�ned to be equivalent to either R0 or R1. This error can also occur in the MOVC
A,@A+DPTR, MOVC A,@A+PC, MOVX A,@DPTR, MOVX @DPTR,A and the JMP
@A+DPTR instructions if the operands after the indirect addressing mode designator (@
) aren't speci�ed properly.

8.2.21 ERROR #22: Missing operand delimiter

A COMMA operand delimiter is missing from the operand �elds of the instruction.

8.2.22 ERROR #23: Illegal or missing directive

This error occurs when the Cross Assembler cannot �nd a legal directive. The most common
cause of this error is due to leaving the COLON o� a label. As a result, the following opcode
mnemonic is attempted to be decoded as a directive.

8.2.23 ERROR #24: Attempting to EQUate a previously SET symbol

Once a symbol is de�ned using the SET directive, it cannot be later rede�ned using the
EQU directive.

8.2.24 ERROR #25: Attempting to SET a previously EQUated symbol

Once a symbol is de�ned using the EQU directive, it cannot be rede�ned. If you want the
symbol to be rede�neable, use the SET directive.

8.2.25 ERROR #26: Illegal SET/EQU expression

The expression following the SET or EQU directive is illegal. This typically occurs when
an attempt is made to de�ne a symbol to be equivalent to an implicit register other than
A, R0, R1, R2, R3, R4, R5, R6 or R7.

8.2.26 ERROR #27: Illegal expression with forward reference

This error occurs when an expression contains a symbol that hasn't been de�ned yet. Move
the symbol de�nition earlier in the source �le.

8.2.27 ERROR #28: Address exceeds segment range

The address speci�ed exceeds 255 and you are in the DSEG, BSEG, or ISEG.

54 Chap. 8: 8051 CROSS ASSEMBLER ERROR CODES

8.2.28 ERROR #29: Expecting an EOL or COMMENT

The Cross Assembler has completed processing a legal assembly language line and expected
the line to be terminated with either a COMMENT or a carriage return/line feed pair.

8.2.29 ERROR #30: Illegal directive with current active segment

The speci�ed directive is not legal in the active segment. This can happen by trying to use
the DBIT directive in other than the BSEG, or using the DS directive in the BSEG.

8.2.30 ERROR #31: Only two character string allowed

This error occurs using the DW directive. The maximum ASCII literal allowed in a DW
speci�cation is a two character string.

8.2.31 ERROR #32: Byte de�nition exceeds 255

This error occurs using the DB directive. The value speci�ed in the DB speci�cation cannot
�t into a byte.

8.2.32 ERROR #33: Premature end of string

An ASCII literal string was not terminated properly with an apostrophe.

8.2.33 ERROR #34: Illegal register bank number

This error occurs when the number speci�ed with the USING directive exceed 3. Legal
register bank numbers are: 0, 1, 2, 3.

8.2.34 ERROR #35: Include �le nesting exceeds 8

The maximum number of nested include �les is eight. You will get this error if you exceed
this limit.

8.2.35 ERROR #36: Illegal or missing argument

This error occurs when the syntax of a Cross Assembler control requires an argument and
it was either incorrectly speci�ed or is missing all together.

8.2.36 ERROR #37: Illegal control statement

The Cross Assembler does not recognize the speci�ed control. The legal controls are detailed
in Chapter 6.

Chap. 8: 8051 CROSS ASSEMBLER ERROR CODES 55

8.2.37 ERROR #38: Unable to open �le

The Cross Assembler is unable to open the �le as speci�ed. This is a fatal error which will
abort the assembly process.

8.2.38 ERROR #39: Illegal �le speci�cation

The �le speci�cation is not a legal �le designator. Refer to your DOS manual for a descrip-
tion of legal �le designators. This is a fatal error which will abort the assembly process.

8.2.39 ERROR #40: Program synchronization error

This error occurs when the Cross Assembler is generating the object hex �le and �nds that
the code segment location counter is not advancing properly. There are two cases where
this can happen. First, if the source program uses ORG directives and they are not placed
in ascending order. Second, if a generic CALL or JMP is made to a forward reference
that is actually de�ned later in the program to be a backward reference. For example, the
following code sequence will cause this error due to the second reason:

BACK_REF: NOP

CALL FORWARD_REF

FORWARD_REF EQU BACK_REF

During the �rst pass, the generic CALL will be replaced with a 3-byte LCALL instruction.
During the second pass, the generic CALL will be replaced with a 2-byte ACALL instruction.
To prevent this kind of problem, use the generic CALLs and JMPs with labeled targets,
not EQU or SET de�ned symbols.

8.2.40 ERROR #41: Insu�cient memory

This error occurs when there isn't enough memory to hold all the symbols that have been
generated by the source program. If you have 96 Kbytes or more of RAM this will be a
very rare error. Only a massive source program or numerous large macros could potentially
cause this error. However, if this error does occur, your best bet is to either buy more
memory or to break up your program into smaller pieces and share common symbols with
a common $INCLUDE �le.

8.2.41 ERROR #42: More errors detected, not listed

The internal error bu�er can hold 50 errors. If more than 50 errors occur, only the �rst 50
will be reported.

8.2.42 ERROR #43: ENDIF without IF

The terminator of a conditional assembly block (ENDIF) was recognized without seeing a
matching IF.

56 Chap. 8: 8051 CROSS ASSEMBLER ERROR CODES

8.2.43 ERROR #44: Missing ENDIF

A conditional assembly block was begun with an IF statement, but no matching ENDIF
was detected.

8.2.44 ERROR #45: Illegal or missing macro name

The MACRO keyword was recognized, but the symbol that is supposed to precede the
MACRO keyword was missing, an illegal symbol or a duplicate symbol.

8.2.45 ERROR #46: Macro nesting too deep

Macros can be nested to a depth of 9 levels. Exceeding this limit will cause this error.

8.2.46 ERROR #47: Number of parameters doesn't match de�nition

In attempting to use a macro, the number of parameters in the parameter list does not
equal the number of parameters speci�ed in the macro de�nition. They must match.

8.2.47 ERROR #48: Illegal parameter speci�cation

This error typically occurs when a previously de�ned symbol is used in the parameter list
of the macro de�nition.

8.2.48 ERROR #49: Too many parameters

The maximum number of parameters in a macro parameter list is sixteen. This error occurs
when you exceed that limit.

8.2.49 ERROR #50: Line exceeds 255 characters

The maximum length of a source line is 255 characters. If a carriage return/line feed pair
is not detected in the �rst 256 characters of a line, this error is reported and the line is
truncated at 255 characters.

Appendix A

SAMPLE PROGRAM AND LISTING

A.1 Source File

;

; 8-bit by 8-bit signed multiply--byte signed multiply

;

; This routine takes the signed byte in multiplicand and

; multiplies it by the signed byte in multiplier and places

; the signed 16-bit product in product_high and product_low.

;

; This routine assumes 2s complement representation of signed

; numbers. The maximum numbers possible are then -128 and

; +127. Multiplying the possible maximum numbers together

; easily fits into a 16-bit product, so no overflow test is

; done on the answer.

;

; Registers altered by routine: A, B, PSW.

;

;

; Primary controls

$MOD51

$TITLE(BYTE SIGNED MULTIPLY)

$DATE(JUL-30-84)

$PAGEWIDTH(132)

$OBJECT(B:BMULB.OBJ)

;

;

; Variable declarations

;

sign_flag BIT 0F0H ;sign of product

multiplier DATA 030H ;8-bit multiplier

multiplicand DATA 031H ;8-bit multiplicand

product_high DATA 032H ;high byte of 16-bit answer

product_low DATA 033H ;low byte of answer

;

;

;

ORG 100H ;arbitrary start

;

byte_signed_multiply:

CLR sign_flag ;reset sign

MOV A,multiplier ;put multiplier in accumulator

JNB ACC.7,positive ;test sign bit of multiplier

CPL A ;negative--complement and

INC A ;add 1 to convert to positive

58 Chap. A: SAMPLE PROGRAM AND LISTING

SETB sign_flag ;and set sign flag

;

positive: MOV B,multiplicand ;put multiplicand in B register

JNB B.7,multiply ;test sign bit of multiplicand

XRL B,#0FFh ;negative--complement and

INC B ;add 1 to convert to positive

CPL sign_flag ;complement sign flag

;

multiply: MUL AB ;do unsigned multiplication

;

sign_test: JNB sign_flag,byte_signed_exit ;if positive,done

XRL B,#0FFh ;else have to complement both

CPL A ;bytes of the product and inc

ADD A,#1 ;add here because inc doesn't

JNC byte_signed_exit ;set the carry flag

INC B ;if add overflowed A, inc the

;high byte

byte_signed_exit:

MOV product_high,B ;save the answer

MOV product_low,A

;

RET ;and return

END

A.2 Source File Listing

BMULB BYTE SIGNED MULTIPLY

1 ;

2 ; 8-bit by 8-bit signed multiply--byte signed multiply

3 ;

4 ; This routine takes the signed byte in multiplicand and

5 ; multiplies it by the signed byte in multiplier and places

6 ; the signed 16-bit product in product_high and product_low.

7 ;

8 ; This routine assumes 2s complement representation of signed

9 ; numbers. The maximum numbers possible is then -128 and +127.

10 ; Multiplying the possible maximum numbers together easily fits

11 ; in a 16-bit product, so no overflow test is done on the answer.

12 ;

13 ; Registers altered by routine: A, B, PSW.

14 ;

15 ;

16 ; Primary controls

17 $MOD51

18 $TITLE(BYTE SIGNED MULTIPLY)

19 $DATE(JUL-30-84)

20 $PAGEWIDTH(132)

21 $OBJECT(B:BMULB.OBJ)

22 ;

23 ;

24 ; Variable declarations

25 ;

00F0 26 sign_flag BIT 0F0H ;sign of product

0030 27 multiplier DATA 030H ;8-bit multiplier

Chap. A: SAMPLE PROGRAM AND LISTING 59

0031 28 multiplicand DATA 031H ;8-bit multiplicand

0032 29 product_high DATA 032H ;high byte of 16-bit answer

0033 30 product_low DATA 033H ;low byte of answer

31 ;

32 ;

33 ;

0100 34 ORG 100H ;arbitrary start

35 ;

0100 36 byte_signed_multiply:

0100 C2F0 37 CLR sign_flag ;reset sign

0102 E530 38 MOV A,multiplier ;put multiplier in accumulator

0104 30E704 39 JNB ACC.7,positive ;test sign bit of multiplier

0107 F4 40 CPL A ;negative--complement and

0108 04 41 INC A ;add 1 to convert to positive

0109 D2F0 42 SETB sign_flag ;and set sign flag

43 ;

010B 8531F0 44 positive: MOV B,multiplicand ;put multiplicand in B register

010E 30F707 45 JNB B.7,multiply ;test sign bit of multiplicand

0111 63F0FF 46 XRL B,#0FFh ;negative--complement and

0114 05F0 47 INC B ;add 1 to convert to positive

0116 B2F0 48 CPL sign_flag ;complement sign flag

49 ;

0118 A4 50 multiply: MUL AB ;do unsigned multiplication

51 ;

0119 30F00A 52 sign_test: JNB sign_flag,byte_signed_exit ;if positive,done

011C 63F0FF 53 XRL B,#0FFh ;else have to complement both

011F F4 54 CPL A ;bytes of the product and inc

0120 2401 55 ADD A,#1 ;need add here because inc

0122 5002 56 JNC byte_signed_exit ; doesn't set the carry flag

0124 05F0 57 INC B ;if add overflowed A,

58 ; inc the high byte

0126 59 byte_signed_exit:

0126 85F032 60 MOV product_high,B ;save the answer

0129 F533 61 MOV product_low,A

62 ;

012B 22 63 RET ;and return

64 END

ASSEMBLY COMPLETE, 0 ERRORS FOUND

ACC D ADDR 00E0H PREDEFINED

B D ADDR 00F0H PREDEFINED

BYTE_SIGNED_EXIT C ADDR 0126H

BYTE_SIGNED_MULTIPLY C ADDR 0100H NOT USED

MULTIPLICAND D ADDR 0031H

MULTIPLIER D ADDR 0030H

MULTIPLY C ADDR 0118H

POSITIVE C ADDR 010BH

PRODUCT_HIGH D ADDR 0032H

PRODUCT_LOW D ADDR 0033H

SIGN_FLAG B ADDR 00F0H

SIGN_TEST C ADDR 0119H NOT USED

60 Chap. A: SAMPLE PROGRAM AND LISTING

Appendix B

PRE-DEFINED BYTE AND BIT ADDRESSES

The following tables detail the pre-de�ned byte and bit addresses for the 8051/8031 micro-
controllers supported by the MetaLink family of emulators. Proliferation parts are delimited
from the standard MCS-51 de�nitions by asterisk ("*") boxes.

This list covers these microcontrollers:

8044 8031 8032 8051 8052 8053 80C154 80C321

8344 80C31 80C32 8751 8752 8753 83C154 80C521

8744 80C51 80C52 85C154 87C521

87C51

80C321 80C51FA(80C252) 80C452 80C152JA/JB/JC/JD 80C851

80C541 83C51FA(83C252) 83C452 83C152JA/JC 83C851

87C541 87C51FA(87C252) 87C452

80C451 80C652 80C552 83C751 83C752 80512 80515 80C515 80C517

83C451 83C652 83C552 87C751 87C752 80532 80535 80C535 80C537

87C451 87C652 87C552

B.1 Pre-de�ned Byte Addresses

P0 DATA 080H ;PORT 0

SP DATA 081H ;STACK POINTER

DPL DATA 082H ;DATA POINTER - LOW BYTE

DPH DATA 083H ;DATA POINTER - HIGH BYTE

**

for the 80C321/80C521

DPL1 DATA 084H ;DATA POINTER LOW 1

DPH1 DATA 085H ;DATA POINTER HIGH 1

DPS DATA 086H ;DATA POINTER SELECTION

**

**

for the 83C152/80C152

GMOD DATA 084H ;GSC MODE

TFIFO DATA 085H ;GSC TRANSMIT BUFFER

**

**

for the 80C517/80C537

WDTREL DATA 086H ;WATCHDOG TIMER RELOAD REG

**

PCON DATA 087H ;POWER CONTROL

62 Chap. B: PRE-DEFINED BYTE AND BIT ADDRESSES

TCON DATA 088H ;TIMER CONTROL

TMOD DATA 089H ;TIMER MODE

TL0 DATA 08AH ;TIMER 0 - LOW BYTE

TL1 DATA 08BH ;TIMER 1 - LOW BYTE

**

for the 83C751/83C752

RTL DATA 08BH ;TIMER 0 - LOW BYTE RELOAD

**

TH0 DATA 08CH ;TIMER 0 - HIGH BYTE

TH1 DATA 08DH ;TIMER 1 - HIGH BYTE

**

for the 83C751/83C752

RTH DATA 08DH ;TIMER 0 - HIGH BYTE RELOAD

**

**

for the 83C752

PWM DATA 08EH ;PULSE WIDTH MODULATION

**

P1 DATA 090H ;PORT 1

**

for the 83C152/80C152

P5 DATA 091H ;PORT 5

DCON0 DATA 092H ;DMA CONTROL 0

DCON1 DATA 093H ;DMA CONTROL 1

BAUD DATA 094H ;GSC BAUD RATE

ADR0 DATA 095H ;GSC MATCH ADDRESS 0

**

**

for the 80C452/83C452

DCON0 DATA 092H ;DMA CONTROL 0

DCON1 DATA 093H ;DMA CONTROL 1

**

**

for the 80C517/80C537

DPSEL DATA 092H ;DATA POINTER SELECT REGISTER

**

SCON DATA 098H ;SERIAL PORT CONTROL

SBUF DATA 099H ;SERIAL PORT BUFFER

**

for the 83C751/83C752

I2CON DATA 098H ;I2C CONTROL

I2DAT DATA 099H ;I2C DATA

**

**

for the 80C517/80C537

IEN2 DATA 09AH ;INTERRUPT ENABLE REGISTER 2

S1CON DATA 09BH ;SERIAL PORT CONTROL 1

S1BUF DATA 09CH ;SERIAL PORT BUFFER 1

S1REL DATA 09DH ;SERIAL RELOAD REG 1

**

Chap. B: PRE-DEFINED BYTE AND BIT ADDRESSES 63

P2 DATA 0A0H ;PORT 2

IE DATA 0A8H ;INTERRUPT ENABLE

**

for the 80C51FA/83C51FA(83C252/80C252)

SADDR DATA 0A9H ;SLAVE INDIVIDUAL ADDRESS

**

**

for the 80515/80535 and 80C517/80C537

IP0 DATA 0A9H ;INTERRUPT PRIORITY REGISTER 0

**

**

for the 80C321/80C521

WDS DATA 0A9H ;WATCHDOG SELECTION

WDK DATA 0AAH ;WATCHDOG KEY

**

**

for the 83C152/80C152

P6 DATA 0A1H ;PORT 6

SARL0 DATA 0A2H ;DMA SOURCE ADDR. 0 (LOW)

SARH0 DATA 0A3H ;DMA SOURCE ADDR. 0 (HIGH)

IFS DATA 0A4H ;GSC INTERFRAME SPACING

ADR1 DATA 0A5H ;GSC MATCH ADDRESS 1

**

**

for the 80C452/83C452

SARL0 DATA 0A2H ;DMA SOURCE ADDR. 0 (LOW)

SARH0 DATA 0A3H ;DMA SOURCE ADDR. 0 (HIGH)

**

**

for the 80C552/83C552

CML0 DATA 0A9H ;COMPARE 0 - LOW BYTE

CML1 DATA 0AAH ;COMPARE 1 - LOW BYTE

CML2 DATA 0ABH ;COMPARE 2 - LOW BYTE

CTL0 DATA 0ACH ;CAPTURE 0 - LOW BYTE

CTL1 DATA 0ADH ;CAPTURE 1 - LOW BYTE

CTL2 DATA 0AEH ;CAPTURE 2 - LOW BYTE

CTL3 DATA 0AFH ;CAPTURE 3 - LOW BYTE

**

P3 DATA 0B0H ;PORT 3

**

for the 83C152/80C152

SARL1 DATA 0B2H ;DMA SOURCE ADDR. 1 (LOW)

SARH1 DATA 0B3H ;DMA SOURCE ADDR. 1 (HIGH)

SLOTTM DATA 0B4H ;GSC SLOT TIME

ADR2 DATA 0B5H ;GSC MATCH ADDRESS 2

**

**

for the 80C452/83C452

SARL1 DATA 0B2H ;DMA SOURCE ADDR. 1 (LOW)

SARH1 DATA 0B3H ;DMA SOURCE ADDR. 1 (HIGH)

**

IP DATA 0B8H ;INTERRUPT PRIORITY

64 Chap. B: PRE-DEFINED BYTE AND BIT ADDRESSES

**

for the 80C51FA/83C51FA(83C252/80C252)

SADEN DATA 0B9H ;SLAVE ADDRESS ENABLE

**

**

for the 80515/80535 and 80C517/80C537

IP1 DATA 0B9H ;INTERRUPT PRIORITY REGISTER 1

IRCON DATA 0C0H ;INTERRUPT REQUEST CONTROL

CCEN DATA 0C1H ;COMPARE/CAPTURE ENABLE

CCL1 DATA 0C2H ;COMPARE/CAPTURE REGISTER 1 - LOW BYTE

CCH1 DATA 0C3H ;COMPARE/CAPTURE REGISTER 1 - HIGH BYTE

CCL2 DATA 0C4H ;COMPARE/CAPTURE REGISTER 2 - LOW BYTE

CCH2 DATA 0C5H ;COMPARE/CAPTURE REGISTER 2 - HIGH BYTE

CCL3 DATA 0C6H ;COMPARE/CAPTURE REGISTER 3 - LOW BYTE

CCH3 DATA 0C7H ;COMPARE/CAPTURE REGISTER 3 - HIGH BYTE

T2CON DATA 0C8H ;TIMER 2 CONTROL

CRCL DATA 0CAH ;COMPARE/RELOAD/CAPTURE - LOW BYTE

CRCH DATA 0CBH ;COMPARE/RELOAD/CAPTURE - HIGH BYTE

TL2 DATA 0CCH ;TIMER 2 - LOW BYTE

TH2 DATA 0CDH ;TIMER 2 - HIGH BYTE

**

**

for the 80C517/80C537

CC4EN DATA 0C9H ;COMPARE/CAPTURE 4 ENABLE

CCL4 DATA 0CEH ;COMPARE/CAPTURE REGISTER 4 - LOW BYTE

CCH4 DATA 0CFH ;COMPARE/CAPTURE REGISTER 4 - HIGH BYTE

**

**

for the RUPI-44

STS DATA 0C8H ;SIU STATUS REGISTER

SMD DATA 0C9H ;SERIAL MODE

RCB DATA 0CAH ;RECEIVE CONTROL BYTE

RBL DATA 0CBH ;RECEIVE BUFFER LENGTH

RBS DATA 0CCH ;RECEIVE BUFFER START

RFL DATA 0CDH ;RECEIVE FIELD LENGTH

STAD DATA 0CEH ;STATION ADDRESS

DMA_CNT DATA 0CFH ;DMA COUNT

**

**

for the 8052/8032, 80C51FA/83C51FA(83C252/80C252), 80C154/83C154

T2CON DATA 0C8H ;TIMER 2 CONTROL

**

**

for the 80C51FA/83C51FA(83C252/80C252)

T2MOD DATA 0C9H ;TIMER 2 MODE CONTROL

**

**

for the 8052/8032, 80C51FA/83C51FA(83C252/80C252), 80C154/83C154

RCAP2L DATA 0CAH ;TIMER 2 CAPTURE REGISTER, LOW BYTE

RCAP2H DATA 0CBH ;TIMER 2 CAPTURE REGISTER, HIGH BYTE

TL2 DATA 0CCH ;TIMER 2 - LOW BYTE

TH2 DATA 0CDH ;TIMER 2 - HIGH BYTE

**

**

for the 83C152/80C152

P4 DATA 0C0H ;PORT 4

Chap. B: PRE-DEFINED BYTE AND BIT ADDRESSES 65

DARL0 DATA 0C2H ;DMA DESTINATION ADDR. 0 (LOW)

DARH0 DATA 0C3H ;DMA DESTINATION ADDR. 0 (HIGH)

BKOFF DATA 0C4H ;GSC BACKOFF TIMER

ADR3 DATA 0C5H ;GSC MATCH ADDRESS 3

IEN1 DATA 0C8H ;INTERRUPT ENABLE REGISTER 1

**

**

for the 80C452/83C452

P4 DATA 0C0H ;PORT 4

DARL0 DATA 0C2H ;DMA DESTINATION ADDR. 0 (LOW)

DARH0 DATA 0C3H ;DMA DESTINATION ADDR. 0 (HIGH)

**

**

for the 80C451/83C451

P4 DATA 0C0H ;PORT 4

P5 DATA 0C8H ;PORT 5

**

**

for the 80512/80532

IRCON DATA 0C0H ;INTERRUPT REQUEST CONTROL

**

**

for the 80C552/83C552

P4 DATA 0C0H ;PORT 4

P5 DATA 0C4H ;PORT 5

ADCON DATA 0C5H ;A/D CONVERTER CONTROL

ADCH DATA 0C6H ;A/D CONVERTER HIGH BYTE

TM2IR DATA 0C8H ;T2 INTERRUPT FLAGS

CMH0 DATA 0C9H ;COMPARE 0 - HIGH BYTE

CMH1 DATA 0CAH ;COMPARE 1 - HIGH BYTE

CMH2 DATA 0CBH ;COMPARE 2 - HIGH BYTE

CTH0 DATA 0CCH ;CAPTURE 0 - HIGH BYTE

CTH1 DATA 0CDH ;CAPTURE 1 - HIGH BYTE

CTH2 DATA 0CEH ;CAPTURE 2 - HIGH BYTE

CTH3 DATA 0CFH ;CAPTURE 3 - HIGH BYTE

**

PSW DATA 0D0H ;PROGRAM STATUS WORD

**

for the RUPI-44

NSNR DATA 0D8H ;SEND COUNT/RECEIVE COUNT

SIUST DATA 0D9H ;SIU STATE COUNTER

TCB DATA 0DAH ;TRANSMIT CONTROL BYTE

TBL DATA 0DBH ;TRANSMIT BUFFER LENGTH

TBS DATA 0DCH ;TRANSMIT BUFFER START

FIFO0 DATA 0DDH ;THREE BYTE FIFO

FIFO1 DATA 0DEH

FIFO2 DATA 0DFH

**

**

for the 80C51FA/83C51FA(83C252/80C252)

CCON DATA 0D8H ;CONTROL COUNTER

CMOD DATA 0D9H ;COUNTER MODE

CCAPM0 DATA 0DAH ;COMPARE/CAPTURE MODE FOR PCA MODULE 0

CCAPM1 DATA 0DBH ;COMPARE/CAPTURE MODE FOR PCA MODULE 1

CCAPM2 DATA 0DCH ;COMPARE/CAPTURE MODE FOR PCA MODULE 2

66 Chap. B: PRE-DEFINED BYTE AND BIT ADDRESSES

CCAPM3 DATA 0DDH ;COMPARE/CAPTURE MODE FOR PCA MODULE 3

CCAPM4 DATA 0DEH ;COMPARE/CAPTURE MODE FOR PCA MODULE 4

**

**

for the 80515/80535

ADCON DATA 0D8H ;A/D CONVERTER CONTROL

ADDAT DATA 0D9H ;A/D CONVERTER DATA

DAPR DATA 0DAH ;D/A CONVERTER PROGRAM REGISTER

**

**

for the 83C152/80C152

DARL1 DATA 0D2H ;DMA DESTINATION ADDR. 1 (LOW)

DARH1 DATA 0D3H ;DMA DESTINATION ADDR. 1 (HIGH)

TCDCNT DATA 0D4H ;GSC TRANSMIT COLLISION COUNTER

AMSK0 DATA 0D5H ;GSC ADDRESS MASK 0

TSTAT DATA 0D8H ;TRANSMIT STATUS (DMA & GSC)

**

**

for the 80C452/83C452

DARL1 DATA 0D2H ;DMA DESTINATION ADDR. 1 (LOW)

DARH1 DATA 0D3H ;DMA DESTINATION ADDR. 1 (HIGH)

**

**

for the 80C451/83C451

P6 DATA 0D8H ;PORT 6

**

**

for the 80512/80532

ADCON DATA 0D8H ;A/D CONVERTER CONTROL

ADDAT DATA 0D9H ;A/D CONVERTER DATA

DAPR DATA 0DAH ;D/A CONVERTER PROGRAM REGISTER

P6 DATA 0DBH ;PORT 6

**

**

for the 83C751/83C752

I2CFG DATA 0D8H ;I2C CONFIGURATION

**

**

for the 80C552/83C552 and 80C652/83C652

S1CON DATA 0D8H ;SERIAL 1 CONTROL

S1STA DATA 0D9H ;SERIAL 1 STATUS

S1DAT DATA 0DAH ;SERIAL 1 DATA

S1ADR DATA 0DBH ;SERIAL 1 SLAVE ADDRESS

**

**

for the 80C517/80C537

CML0 DATA 0D2H ;COMPARE REGISTER 0 - LOW BYTE

CMH0 DATA 0D3H ;COMPARE REGISTER 0 - HIGH BYTE

CML1 DATA 0D4H ;COMPARE REGISTER 1 - LOW BYTE

CMH1 DATA 0D5H ;COMPARE REGISTER 1 - HIGH BYTE

CML2 DATA 0D6H ;COMPARE REGISTER 2 - LOW BYTE

CMH2 DATA 0D7H ;COMPARE REGISTER 2 - HIGH BYTE

ADCON0 DATA 0D8H ;A/D CONVERTER CONTROL 0

ADDAT DATA 0D9H ;A/D CONVERTER DATA

DAPR DATA 0DAH ;D/A CONVERTER PROGRAM REGISTER

P7 DATA 0DBH ;PORT 7

ADCON1 DATA 0DCH ;A/D CONVERTER CONTROL 1

Chap. B: PRE-DEFINED BYTE AND BIT ADDRESSES 67

P8 DATA 0DDH ;PORT 8

CTRELL DATA 0DEH ;COM TIMER REL REG - LOW BYTE

CTRELH DATA 0DFH ;COM TIMER REL REG - HIGH BYTE

**

ACC DATA 0E0H ;ACCUMULATOR

**

for the 83C152/80C152

BCRL0 DATA 0E2H ;DMA BYTE COUNT 0 (LOW)

BCRH0 DATA 0E3H ;DMA BYTE COUNT 0 (HIGH)

PRBS DATA 0E4H ;GSC PSEUDO-RANDOM SEQUENCE

AMSK1 DATA 0E5H ;GSC ADDRESS MASK 1

RSTAT DATA 0E8H ;RECEIVE STATUS (DMA & GSC)

**

**

for the 80C452/83C452

BCRL0 DATA 0E2H ;DMA BYTE COUNT 0 (LOW)

BCRH0 DATA 0E3H ;DMA BYTE COUNT 0 (HIGH)

HSTAT DATA 0E6H ;HOST STATUS

HCON DATA 0E7H ;HOST CONTROL

SLCON DATA 0E8H ;SLAVE CONTROL

SSTAT DATA 0E9H ;SLAVE STATUS

IWPR DATA 0EAH ;INPUT WRITE POINTER

IRPR DATA 0EBH ;INPUT READ POINTER

CBP DATA 0ECH ;CHANNEL BOUNDARY POINTER

FIN DATA 0EEH ;FIFO IN

CIN DATA 0EFH ;COMMAND IN

**

**

for the 80515/80535

P4 DATA 0E8H ;PORT 4

**

**

for the 80C451/83C451

CSR DATA 0E8H ;CONTROL STATUS

**

**

for the 80512/80532

P4 DATA 0E8H ;PORT 4

**

**

for the 80C552/83C552

IEN1 DATA 0E8H ;INTERRUPT ENABLE REGISTER 1

TM2CON DATA 0EAH ;T2 COUNTER CONTROL

CTCON DATA 0EBH ;CAPTURE CONTROL

TML2 DATA 0ECH ;TIMER 2 - LOW BYTE

TMH2 DATA 0EDH ;TIMER 2 - HIGH BYTE

STE DATA 0EEH ;SET ENABLE

RTE DATA 0EFH ;RESET/TOGGLE ENABLE

**

**

for the 80C51FA/83C51FA(83C252/80C252)

CL DATA 0E9H ;CAPTURE BYTE LOW

CCAP0L DATA 0EAH ;COMPARE/CAPTURE 0 LOW BYTE

CCAP1L DATA 0EBH ;COMPARE/CAPTURE 1 LOW BYTE

CCAP2L DATA 0ECH ;COMPARE/CAPTURE 2 LOW BYTE

68 Chap. B: PRE-DEFINED BYTE AND BIT ADDRESSES

CCAP3L DATA 0EDH ;COMPARE/CAPTURE 3 LOW BYTE

CCAP4L DATA 0EEH ;COMPARE/CAPTURE 4 LOW BYTE

**

**

for the 80C517/80C537

CTCON DATA 0E1H ;COM TIMER CONTROL REG

CML3 DATA 0E2H ;COMPARE REGISTER 3 - LOW BYTE

CMH3 DATA 0E3H ;COMPARE REGISTER 3 - HIGH BYTE

CML4 DATA 0E4H ;COMPARE REGISTER 4 - LOW BYTE

CMH4 DATA 0E5H ;COMPARE REGISTER 4 - HIGH BYTE

CML5 DATA 0E6H ;COMPARE REGISTER 5 - LOW BYTE

CMH5 DATA 0E7H ;COMPARE REGISTER 5 - HIGH BYTE

P4 DATA 0E8H ;PORT 4

MD0 DATA 0E9H ;MUL/DIV REG 0

MD1 DATA 0EAH ;MUL/DIV REG 1

MD2 DATA 0EBH ;MUL/DIV REG 2

MD3 DATA 0ECH ;MUL/DIV REG 3

MD4 DATA 0EDH ;MUL/DIV REG 4

MD5 DATA 0EEH ;MUL/DIV REG 5

ARCON DATA 0EFH ;ARITHMETIC CONTROL REG

**

B DATA 0F0H ;MULTIPLICATION REGISTER

**

for the 80C154/83C154

IOCON DATA 0F8H ;I/O CONTROL REGISTER

**

**

for the 83C152/80C152

BCRL1 DATA 0F2H ;DMA BYTE COUNT 1 (LOW)

BCRH1 DATA 0F3H ;DMA BYTE COUNT 1 (HIGH)

RFIFO DATA 0F4H ;GSC RECEIVE BUFFER

MYSLOT DATA 0F5H ;GSC SLOT ADDRESS

IPN1 DATA 0F8H ;INTERRUPT PRIORITY REGISTER 1

**

**

for the 83C851/80C851

EADRL DATA 0F2H ;EEPROM Address Register - Low Byte

EADRH DATA 0F3H ;EEPROM Address Register - High Byte

EDAT DATA 0F4H ;EEPROM Data Register

ETIM DATA 0F5H ;EEPROM Timer Register

ECNTRL DATA 0F6H ;EEPROM Control Register

**

**

for the 80C452/83C452

BCRL1 DATA 0F2H ;DMA BYTE COUNT 1 (LOW)

BCRH1 DATA 0F3H ;DMA BYTE COUNT 1 (HIGH)

ITHR DATA 0F6H ;INPUT FIFO THRESHOLD

OTHR DATA 0F7H ;OUTPUT FIFO THRESHOLD

IEP DATA 0F8H ;INTERRUPT PRIORITY

MODE DATA 0F9H ;MODE

ORPR DATA 0FAH ;OUTPUT READ POINTER

OWPR DATA 0FBH ;OUTPUT WRITE POINTER

IMIN DATA 0FCH ;IMMEDIATE COMMAND IN

IMOUT DATA 0FDH ;IMMEDIATE COMMAND OUT

FOUT DATA 0FEH ;FIFO OUT

Chap. B: PRE-DEFINED BYTE AND BIT ADDRESSES 69

COUT DATA 0FFH ;COMMAND OUT

**

**

for the 80515/80535

P5 DATA 0F8H ;PORT 5

**

**

for the 80512/80532

P5 DATA 0F8H ;PORT 5

**

**

for the 83C751/83C752

I2STA DATA 0F8H ;I2C STATUS

**

**

for the 80C552/83C552

IP1 DATA 0F8H ;INTERRUPT PRIORITY REGISTER 1

PWM0 DATA 0FCH ;PULSE WIDTH REGISTER 0

PWM1 DATA 0FDH ;PULSE WIDTH REGISTER 1

PWMP DATA 0FEH ;PRESCALER FREQUENCY CONTROL

T3 DATA 0FFH ;T3 - WATCHDOG TIMER

**

**

for the 80C517/80C537

CMEN DATA 0F6H ;COMPARE ENABLE

CML6 DATA 0F2H ;COMPARE REGISTER 6 - LOW BYTE

CMH6 DATA 0F3H ;COMPARE REGISTER 6 - HIGH BYTE

CML7 DATA 0F4H ;COMPARE REGISTER 7 - LOW BYTE

CMH7 DATA 0F5H ;COMPARE REGISTER 7 - HIGH BYTE

CMSEL DATA 0F7H ;COMPARE INPUT REGISTER

P5 DATA 0F8H ;PORT 5

P6 DATA 0FAH ;PORT 6

**

**

for the 80C51FA/83C51FA(83C252/80C252)

CH DATA 0F9H ;CAPTURE HIGH BYTE

CCAP0H DATA 0FAH ;COMPARE/CAPTURE 0 HIGH BYTE

CCAP1H DATA 0FBH ;COMPARE/CAPTURE 1 HIGH BYTE

CCAP2H DATA 0FCH ;COMPARE/CAPTURE 2 HIGH BYTE

CCAP3H DATA 0FDH ;COMPARE/CAPTURE 3 HIGH BYTE

CCAP4H DATA 0FEH ;COMPARE/CAPTURE 4 HIGH BYTE

**

**

for the 83C752

PWENA DATA 0FEH ;PULSE WIDTH ENABLE

**

B.2 Pre-de�ned Bit Addresses

**

for the 83C751/83C752

SCL BIT 080H ;P0.0 - I2C SERIAL CLOCK

SDA BIT 081H ;P0.1 - I2C SERIAL DATA

**

IT0 BIT 088H ;TCON.0 - EXT. INTERRUPT 0 TYPE

IE0 BIT 089H ;TCON.1 - EXT. INTERRUPT 0 EDGE FLAG

70 Chap. B: PRE-DEFINED BYTE AND BIT ADDRESSES

IT1 BIT 08AH ;TCON.2 - EXT. INTERRUPT 1 TYPE

IE1 BIT 08BH ;TCON.3 - EXT. INTERRUPT 1 EDGE FLAG

TR0 BIT 08CH ;TCON.4 - TIMER 0 ON/OFF CONTROL

TF0 BIT 08DH ;TCON.5 - TIMER 0 OVERFLOW FLAG

TR1 BIT 08EH ;TCON.6 - TIMER 1 ON/OFF CONTROL

TF1 BIT 08FH ;TCON.7 - TIMER 1 OVERFLOW FLAG

**

for the 83C751/83C752

C/T BIT 08EH ;TCON.6 - COUNTER OR TIMER OPERATION

GATE BIT 08FH ;TCON.7 - GATE TIMER

**

**

for the 80515/80535

INT3 BIT 090H ;P1.0 - EXT. INTERRUPT 3/CAPT & COMP 0

INT4 BIT 091H ;P1.1 - EXT. INTERRUPT 4/CAPT & COMP 1

INT5 BIT 092H ;P1.2 - EXT. INTERRUPT 5/CAPT & COMP 2

INT6 BIT 093H ;P1.3 - EXT. INTERRUPT 6/CAPT & COMP 3

INT2 BIT 094H ;P1.4 - EXT. INTERRUPT 2

T2EX BIT 095H ;P1.5 - TIMER 2 EXT. RELOAD TRIGGER INP

CLKOUT BIT 096H ;P1.6 - SYSTEM CLOCK OUTPUT

T2 BIT 097H ;P1.7 - TIMER 2 INPUT

**

**

for the 83C152/80C152

GRXD BIT 090H ;P1.0 - GSC RECEIVER DATA INPUT

GTXD BIT 091H ;P1.1 - GSC TRANSMITTER DATA OUTPUT

DEN BIT 092H ;P1.2 - DRIVE ENABLE TO ENABLE EXT DRIVE

TXC BIT 093H ;P1.3 - GSC EXTERNAL TRANSMIT CLOCK INPU

RXC BIT 094H ;P1.4 - GSC EXTERNAL RECEIVER CLOCK INPU

**

**

for the 83C552/80C552

CT0I BIT 090H ;P1.0 - CAPTURE/TIMER INPUT 0

CT1I BIT 091H ;P1.1 - CAPTURE/TIMER INPUT 1

CT2I BIT 092H ;P1.2 - CAPTURE/TIMER INPUT 2

CT3I BIT 093H ;P1.3 - CAPTURE/TIMER INPUT 3

T2 BIT 094H ;P1.4 - T2 EVENT INPUT

RT2 BIT 095H ;P1.5 - T2 TIMER RESET SIGNAL

SCL BIT 096H ;P1.6 - SERIAL PORT CLOCK LINE I2C

SDA BIT 097H ;P1.7 - SERIAL PORT DATA LINE I2C

**

**

for the 80C517/80C537

INT3 BIT 090H ;P1.0 - EXT. INTERRUPT 3/CAPT & COMP 0

INT4 BIT 091H ;P1.1 - EXT. INTERRUPT 4/CAPT & COMP 1

INT5 BIT 092H ;P1.2 - EXT. INTERRUPT 5/CAPT & COMP 2

INT6 BIT 093H ;P1.3 - EXT. INTERRUPT 6/CAPT & COMP 3

INT2 BIT 094H ;P1.4 - EXT. INTERRUPT 2

T2EX BIT 095H ;P1.5 - TIMER 2 EXT. RELOAD TRIGGER INPU

CLKOUT BIT 096H ;P1.6 - SYSTEM CLOCK OUTPUT

T2 BIT 097H ;P1.7 - TIMER 2 INPUT

**

**

for the 80C452/83C452 and 80C152/83C152

HLD BIT 095H ;P1.5 - DMA HOLD REQUEST I/O

HLDA BIT 096H ;P1.6 - DMA HOLD ACKNOWLEDGE OUTPUT

Chap. B: PRE-DEFINED BYTE AND BIT ADDRESSES 71

**

**

for the 83C751/83C752

INT0 BIT 095H ;P1.5 - EXTERNAL INTERRUPT 0 INPUT

INT1 BIT 096H ;P1.6 - EXTERNAL INTERRUPT 1 INPUT

T0 BIT 096H ;P1.7 - TIMER 0 COUNT INPUT

**

RI BIT 098H ;SCON.0 - RECEIVE INTERRUPT FLAG

TI BIT 099H ;SCON.1 - TRANSMIT INTERRUPT FLAG

RB8 BIT 09AH ;SCON.2 - RECEIVE BIT 8

TB8 BIT 09BH ;SCON.3 - TRANSMIT BIT 8

REN BIT 09CH ;SCON.4 - RECEIVE ENABLE

SM2 BIT 09DH ;SCON.5 - SERIAL MODE CONTROL BIT 2

SM1 BIT 09EH ;SCON.6 - SERIAL MODE CONTROL BIT 1

SM0 BIT 09FH ;SCON.7 - SERIAL MODE CONTROL BIT 0

**

for the 83C751/83C752

MASTER BIT(READ) 099H ;I2CON.1 - MASTER

STP BIT(READ) 09AH ;I2CON.2 - STOP

STR BIT(READ) 09BH ;I2CON.3 - START

ARL BIT(READ) 09CH ;I2CON.4 - ARBITRATION LOSS

DRDY BIT(READ) 09DH ;I2CON.5 - DATA READY

ATN BIT(READ) 09EH ;I2CON.6 - ATTENTION

RDAT BIT(READ) 09FH ;I2CON.7 - RECEIVE DATA

XSTP BIT(WRITE)098H ;I2CON.0 - TRANSMIT STOP

XSTR BIT(WRITE)099H ;I2CON.1 - TRANSMIT REPEATED START

CSTP BIT(WRITE)09AH ;I2CON.2 - CLEAR STOP

CSTR BIT(WRITE)09BH ;I2CON.3 - CLEAR START

CARL BIT(WRITE)09CH ;I2CON.4 - CLEAR ARBITRATION LOSS

CDR BIT(WRITE)09DH ;I2CON.5 - CLEAR DATA READY

IDLE BIT(WRITE)09EH ;I2CON.6 - GO IDLE

CXA BIT(WRITE)09FH ;I2CON.7 - CLEAR TRANSMIT ACTIVE

**

EX0 BIT 0A8H ;IE.0 - EXTERNAL INTERRUPT 0 ENABLE

ET0 BIT 0A9H ;IE.1 - TIMER 0 INTERRUPT ENABLE

EX1 BIT 0AAH ;IE.2 - EXTERNAL INTERRUPT 1 ENABLE

ET1 BIT 0ABH ;IE.3 - TIMER 1 INTERRUPT ENABLE

ES BIT 0ACH ;IE.4 - SERIAL PORT INTERRUPT ENABLE

**

for the 83C751/83C752

EI2 BIT 0ACH ;IE.4 - SERIAL PORT INTERRUPT ENABLE

**

**

for the 8052/8032, 80C154/83C154, 80C252(80C51FA), 80515/80535

ET2 BIT 0ADH ;TIMER 2 INTERRUPT ENABLE

**

**

for the 80C652/83C652

ES1 BIT 0ADH ;IE.5 - SERIAL PORT 1 INTERRUPT ENABLE

**

**

for the 80C252(80C51FA)

EC BIT 0AEH ;IE.6 - ENABLE PCA INTERRUPT

**

72 Chap. B: PRE-DEFINED BYTE AND BIT ADDRESSES

**

for the 80515/80535

WDT BIT 0AEH ;IEN0.6 - WATCHDOG TIMER RESET

**

**

for the 83C552/80C552

ES1 BIT 0ADH ;IEN0.5 - SERIAL PORT 1 INTERRUPT ENABLE

EAD BIT 0AEH ;IEN0.6 - ENABLE A/D INTERRUPT

**

**

for the 80C517/80C537

ET2 BIT 0ADH ;IEN0.5 - TIMER 2 INTERRUPT ENABLE

WDT BIT 0AEH ;IEN0.6 - WATCHDOG TIMER RESET

**

EA BIT 0AFH ;IE.7 - GLOBAL INTERRUPT ENABLE

RXD BIT 0B0H ;P3.0 - SERIAL PORT RECEIVE INPUT

TXD BIT 0B1H ;P3.1 - SERIAL PORT TRANSMIT OUTPUT

INT0 BIT 0B2H ;P3.2 - EXTERNAL INTERRUPT 0 INPUT

INT1 BIT 0B3H ;P3.3 - EXTERNAL INTERRUPT 1 INPUT

T0 BIT 0B4H ;P3.4 - TIMER 0 COUNT INPUT

T1 BIT 0B5H ;P3.5 - TIMER 1 COUNT INPUT

WR BIT 0B6H ;P3.6 - WRITE CONTROL FOR EXT. MEMORY

RD BIT 0B7H ;P3.7 - READ CONTROL FOR EXT. MEMORY

PX0 BIT 0B8H ;IP.0 - EXTERNAL INTERRUPT 0 PRIORITY

PT0 BIT 0B9H ;IP.1 - TIMER 0 PRIORITY

PX1 BIT 0BAH ;IP.2 - EXTERNAL INTERRUPT 1 PRIORITY

PT1 BIT 0BBH ;IP.3 - TIMER 1 PRIORITY

PS BIT 0BCH ;IP.4 - SERIAL PORT PRIORITY

**

for the 80C154/83C154

PT2 BIT 0BCH ;IP.5 - TIMER 2 PRIORITY

PCT BIT 0BFH ;IP.7 - INTERRUPT PRIORITY DISABLE

**

**

for the 80C652/83C652

PS1 BIT 0BDH ;IP.5 - SERIAL PORT 1 PRIORITY

**

**

for the 80C51FA/83C51FA(83C252/80C252)

PT2 BIT 0BDH ;IP.5 - TIMER 2 PRIORITY

PPC BIT 0BEH ;IP.6 - PCA PRIORITY

**

**

for the 80515/80535 and 80C517/80C537

EADC BIT 0B8H ;IEN1.0 - A/D CONVERTER INTERRUPT EN

EX2 BIT 0B9H ;IEN1.1 - EXT. INTERRUPT 2 ENABLE

EX3 BIT 0BAH ;IEN1.2 - EXT. INT 3/CAPT/COMP INT 0 EN

EX4 BIT 0BBH ;IEN1.3 - EXT. INT 4/CAPT/COMP INT 1 EN

EX5 BIT 0BCH ;IEN1.4 - EXT. INT 5/CAPT/COMP INT 2 EN

EX6 BIT 0BDH ;IEN1.5 - EXT. INT 6/CAPT/COMP INT 3 EN

SWDT BIT 0BEH ;IEN1.6 - WATCHDOG TIMER START

EXEN2 BIT 0BFH ;IEN1.7 - T2 EXT. RELOAD INTER START

IADC BIT 0C0H ;IRCON.0 - A/D CONVERTER INTER REQUEST

IEX2 BIT 0C1H ;IRCON.1 - EXT. INTERRUPT 2 EDGE FLAG

IEX3 BIT 0C2H ;IRCON.2 - EXT. INTERRUPT 3 EDGE FLAG

Chap. B: PRE-DEFINED BYTE AND BIT ADDRESSES 73

IEX4 BIT 0C3H ;IRCON.3 - EXT. INTERRUPT 4 EDGE FLAG

IEX5 BIT 0C4H ;IRCON.4 - EXT. INTERRUPT 5 EDGE FLAG

IEX6 BIT 0C5H ;IRCON.5 - EXT. INTERRUPT 6 EDGE FLAG

TF2 BIT 0C6H ;IRCON.6 - TIMER 2 OVERFLOW FLAG

EXF2 BIT 0C7H ;IRCON.7 - TIMER 2 EXT. RELOAD FLAG

T2IO BIT 0C8H ;T2CON.0 - TIMER 2 INPUT SELECT BIT 0

T2I1 BIT 0C9H ;T2CON.1 - TIMER 2 INPUT SELECT BIT 1

T2CM BIT 0CAH ;T2CON.2 - COMPARE MODE

T2R0 BIT 0CBH ;T2CON.3 - TIMER 2 RELOAD MODE SEL BIT 0

T2R1 BIT 0CCH ;T2CON.4 - TIMER 2 RELOAD MODE SEL BIT 1

I2FR BIT 0CDH ;T2CON.5 - EXT. INT 2 F/R EDGE FLAG

I3FR BIT 0CEH ;T2CON.6 - EXT. INT 3 F/R EDGE FLAG

T2PS BIT 0CFH ;T2CON.7 - PRESCALER SELECT BIT

**

**

for the 83C552/80C552

PS1 BIT 0BDH ;IP0.5 - SIO1

PAD BIT 0BEH ;IP0.6 - A/D CONVERTER

CMSR0 BIT 0C0H ;P4.0 - T2 COMPARE AND SET/RESET OUTPUTS

CMSR1 BIT 0C1H ;P4.1 - T2 COMPARE AND SET/RESET OUTPUTS

CMSR2 BIT 0C2H ;P4.2 - T2 COMPARE AND SET/RESET OUTPUTS

CMSR3 BIT 0C3H ;P4.3 - T2 COMPARE AND SET/RESET OUTPUTS

CMSR4 BIT 0C4H ;P4.4 - T2 COMPARE AND SET/RESET OUTPUTS

CMSR5 BIT 0C5H ;P4.5 - T2 COMPARE AND SET/RESET OUTPUTS

CMT0 BIT 0C6H ;P4.6 - T2 COMPARE AND TOGGLE OUTPUTS

CMT1 BIT 0C7H ;P4.7 - T2 COMPARE AND TOGGLE OUTPUTS

CTI0 BIT 0C8H ;TM2IR.0 - T2 CAPTURE 0

CTI1 BIT 0C9H ;TM2IR.1 - T2 CAPTURE 1

CTI2 BIT 0CAH ;TM2IR.2 - T2 CAPTURE 2

CTI3 BIT 0CBH ;TM2IR.3 - T2 CAPTURE 3

CMI0 BIT 0CCH ;TM2IR.4 - T2 COMPARATOR 0

CMI1 BIT 0CDH ;TM2IR.5 - T2 COMPARATOR 1

CMI2 BIT 0CEH ;TM2IR.6 - T2 COMPARATOR 2

T2OV BIT 0CFH ;TM2IR.7 - T2 OVERFLOW

**

**

for the RUPI-44

RBP BIT 0C8H ;STS.0 - RECEIVE BUFFER PROTECT

AM BIT 0C9H ;STS.1 - AUTO/ADDRESSED MODE SELECT

OPB BIT 0CAH ;STS.2 - OPTIONAL POLL BIT

BOV BIT 0CBH ;STS.3 - RECEIVE BUFFER OVERRUN

SI BIT 0CCH ;STS.4 - SIU INTERRUPT FLAG

RTS BIT 0CDH ;STS.5 - REQUEST TO SEND

RBE BIT 0CEH ;STS.6 - RECEIVE BUFFER EMPTY

TBF BIT 0CFH ;STS.7 - TRANSMIT BUFFER FULL

**

**

for the 8052/8032, 80C154/83C154, 80C51FA/83C51FA(83C252/80C252)

CAP2 BIT 0C8H ;T2CON.0 - CAPTURE OR RELOAD SELECT

CNT2 BIT 0C9H ;T2CON.1 - TIMER OR COUNTER SELECT

TR2 BIT 0CAH ;T2CON.2 - TIMER 2 ON/OFF CONTROL

EXEN2 BIT 0CBH ;T2CON.3 - TIMER 2 EXTERNAL ENABLE FLAG

TCLK BIT 0CCH ;T2CON.4 - TRANSMIT CLOCK SELECT

RCLK BIT 0CDH ;T2CON.5 - RECEIVE CLOCK SELECT

EXF2 BIT 0CEH ;T2CON.6 - EXTERNAL TRANSITION FLAG

TF2 BIT 0CFH ;T2CON.7 - TIMER 2 OVERFLOW FLAG

**

74 Chap. B: PRE-DEFINED BYTE AND BIT ADDRESSES

**

for the 83C152/80C152

EGSRV BIT 0C8H ;IEN1.0 - GSC RECEIVE VALID

EGSRE BIT 0C9H ;IEN1.1 - GSC RECEIVE ERROR

EDMA0 BIT 0CAH ;IEN1.2 - DMA CHANNEL REQUEST 0

EGSTV BIT 0CBH ;IEN1.3 - GSC TRANSMIT VALID

EDMA1 BIT 0CCH ;IEN1.4 - DMA CHANNEL REQUEST 1

EGSTE BIT 0CDH ;IEN1.5 - GSC TRANSMIT ERROR

**

**

for the 80512/80532

IADC BIT 0C0H ;IRCON.0 - A/D CONVERTER INTERRUPT REQ

**

P BIT 0D0H ;PSW.0 - ACCUMULATOR PARITY FLAG

**

for the 83C552/80C552

F1 BIT 0D1H ;PSW.1 - FLAG 1

**

**

for the 80512/80532

F1 BIT 0D1H ;PSW.1 - FLAG 1

MX0 BIT 0D8H ;ADCON.0 - ANALOG INPUT CH SELECT BIT 0

MX1 BIT 0D9H ;ADCON.1 - ANALOG INPUT CH SELECT BIT 1

MX2 BIT 0DAH ;ADCON.2 - ANALOG INPUT CH SELECT BIT 2

ADM BIT 0DBH ;ADCON.3 - A/D CONVERSION MODE

BSY BIT 0DCH ;ADCON.4 - BUSY FLAG

BD BIT 0DFH ;ADCON.7 - BAUD RATE ENABLE

**

OV BIT 0D2H ;PSW.2 - OVERFLOW FLAG

RS0 BIT 0D3H ;PSW.3 - REGISTER BANK SELECT 0

RS1 BIT 0D4H ;PSW.4 - REGISTER BANK SELECT 1

F0 BIT 0D5H ;PSW.5 - FLAG 0

AC BIT 0D6H ;PSW.6 - AUXILIARY CARRY FLAG

CY BIT 0D7H ;PSW.7 - CARRY FLAG

**

for the 80C51FA/83C51FA(83C252/80C252)

CCF0 BIT 0D8H ;CCON.0 -PCA MODULE 0 INTERRUPT FLAG

CCF1 BIT 0D9H ;CCON.1 -PCA MODULE 1 INTERRUPT FLAG

CCF2 BIT 0DAH ;CCON.2 -PCA MODULE 2 INTERRUPT FLAG

CCF3 BIT 0DBH ;CCON.3 -PCA MODULE 3 INTERRUPT FLAG

CCF4 BIT 0DCH ;CCON.4 -PCA MODULE 4 INTERRUPT FLAG

CR BIT 0DEH ;CCON.6 - COUNTER RUN

CF BIT 0DFH ;PCA COUNTER OVERFLOW FLAG

**

**

for the RUPI-44

SER BIT 0D8H ;NSNR.0 - RECEIVE SEQUENCE ERROR

NR0 BIT 0D9H ;NSNR.1 - RECEIVE SEQUENCE COUNTER-BIT 0

NR1 BIT 0DAH ;NSNR.2 - RECEIVE SEQUENCE COUNTER-BIT 1

NR2 BIT 0DBH ;NSNR.3 - RECEIVE SEQUENCE COUNTER-BIT 2

SES BIT 0DCH ;NSNR.4 - SEND SEQUENCE ERROR

NS0 BIT 0DDH ;NSNR.5 - SEND SEQUENCE COUNTER-BIT 0

NS1 BIT 0DEH ;NSNR.6 - SEND SEQUENCE COUNTER-BIT 1

Chap. B: PRE-DEFINED BYTE AND BIT ADDRESSES 75

NS2 BIT 0DFH ;NSNR.7 - SEND SEQUENCE COUNTER-BIT 2

**

**

for the 80515/80535

MX0 BIT 0D8H ;ADCON.0 - ANALOG INPUT CH SELECT BIT 0

MX1 BIT 0D9H ;ADCON.1 - ANALOG INPUT CH SELECT BIT 1

MX2 BIT 0DAH ;ADCON.2 - ANALOG INPUT CH SELECT BIT 2

ADM BIT 0DBH ;ADCON.3 - A/D CONVERSION MODE

BSY BIT 0DCH ;ADCON.4 - BUSY FLAG

CLK BIT 0DEH ;ADCON.5 - SYSTEM CLOCK ENABLE

BD BIT 0DFH ;ADCON.7 - BAUD RATE ENABLE

**

**

for the 80C652/83C652

CR0 BIT 0D8H ;S1CON.0 - CLOCK RATE 0

CR1 BIT 0D9H ;S1CON.1 - CLOCK RATE 1

AA BIT 0DAH ;S1CON.2 - ASSERT ACKNOWLEDGE

SI BIT 0DBH ;S1CON.3 - SIO1 INTERRUPT BIT

STO BIT 0DCH ;S1CON.4 - STOP FLAG

STA BIT 0DDH ;S1CON.5 - START FLAG

ENS1 BIT 0DEH ;S1CON.6 - ENABLE SIO1

**

**

for the 83C152/80C152

DMA BIT 0D8H ;TSTAT.0 - DMA SELECT

TEN BIT 0D9H ;TSTAT.1 - TRANSMIT ENABLE

TFNF BIT 0DAH ;TSTAT.2 - TRANSMIT FIFO NOT FULL

TDN BIT 0DBH ;TSTAT.3 - TRANSMIT DONE

TCDT BIT 0DCH ;TSTAT.4 - TRANSMIT COLLISION DETECT

UR BIT 0DDH ;TSTAT.5 - UNDERRUN

NOACK BIT 0DEH ;TSTAT.6 - NO ACKNOWLEDGE

LNI BIT 0DFH ;TSTAT.7 - LINE IDLE

HBAEN BIT 0E8H ;RSTAT.0 - HARDWARE BASED ACKNOWLEDGE EN

GREN BIT 0E9H ;RSTAT.1 - RECEIVER ENABLE

RFNE BIT 0EAH ;RSTAT.2 - RECEIVER FIFO NOT EMPTY

RDN BIT 0EBH ;RSTAT.3 - RECEIVER DONE

CRCE BIT 0ECH ;RSTAT.4 - CRC ERROR

AE BIT 0EDH ;RSTAT.5 - ALIGNMENT ERROR

RCABT BIT 0EEH ;RSTAT.6 - RCVR COLLISION/ABORT DETECT

OR BIT 0EFH ;RSTAT.7 - OVERRUN

PGSRV BIT 0F8H ;IPN1.0 - GSC RECEIVE VALID

PGSRE BIT 0F9H ;IPN1.1 - GSC RECEIVE ERROR

PDMA0 BIT 0FAH ;IPN1.2 - DMA CHANNEL REQUEST 0

PGSTV BIT 0FBH ;IPN1.3 - GSC TRANSMIT VALID

PDMA1 BIT 0FCH ;IPN1.4 - DMA CHANNEL REQUEST 1

PGSTE BIT 0FDH ;IPN1.5 - GSC TRANSMIT ERROR

**

**

for the 80C452/83C452

OFRS BIT 0E8H ;SLCON.0 - OUTPUT FIFO CH REQ SERVICE

IFRS BIT 0E9H ;SLCON.1 - INPUT FIFO CH REQ SERVICE

FRZ BIT 0EBH ;SLCON.3 - ENABLE FIFO DMA FREEZE MODE

ICOI BIT 0ECH ;SLCON.4 - GEN INT WHEN IMMEDIATE COMMAN

OUT REGISTER IS AVAILABLE

ICII BIT 0EDH ;SLCON.5 - GEN INT WHEN A COMMAND IS

WRITTEN TO IMMEDIATE COMMAND IN REG

OFI BIT 0EEH ;SLCON.6 - ENABLE OUTPUT FIFO INTERRUPT

76 Chap. B: PRE-DEFINED BYTE AND BIT ADDRESSES

IFI BIT 0EFH ;SLCON.7 - ENABLE INPUT FIFO INTERRUPT

EFIFO BIT 0F8H ;IEP.0 - FIFO SLAVE BUS I/F INT EN

PDMA1 BIT 0F9H ;IEP.1 - DMA CHANNEL REQUEST 1

PDMA0 BIT 0FAH ;IEP.2 - DMA CHANNEL REQUEST 0

EDMA1 BIT 0FBH ;IEP.3 - DMA CHANNEL 1 INTERRUPT ENABLE

EDMA0 BIT 0FCH ;IEP.4 - DMA CHANNEL 0 INTERRUPT ENABLE

PFIFO BIT 0FDH ;IEP.5 - FIFO SLAVE BUS I/F INT PRIORITY

**

**

for the 80C451/83C451

IBF BIT 0E8H ;CSR.0 - INPUT BUFFER FULL

OBF BIT 0E9H ;CSR.1 - OUTPUT BUFFER FULL

IDSM BIT 0EAH ;CSR.2 - INPUT DATA STROBE

OBFC BIT 0EBH ;CSR.3 - OUTPUT BUFFER FLAG CLEAR

MA0 BIT 0ECH ;CSR.4 - AFLAG MODE SELECT

MA1 BIT 0EDH ;CSR.5 - AFLAG MODE SELECT

MB0 BIT 0EEH ;CSR.6 - BFLAG MODE SELECT

MB1 BIT 0EFH ;CSR.7 - BFLAG MODE SELECT

**

**

for the 83C751/83C752

CTO BIT(READ) 0D8H ;I2CFG.0 - CLOCK TIMING 0

CT1 BIT(READ) 0D9H ;I2CFG.1 - CLOCK TIMING 1

T1RUN BIT(READ) 0DCH ;I2CFG.4 - START/STOP TIMER 1

MASTRQ BIT(READ) 0DEH ;I2CFG.6 - MASTER I2C

SLAVEN BIT(READ) 0DFH ;I2CFG.7 - SLAVE I2C

CT0 BIT(WRITE)0D8H ;I2CFG.0 - CLOCK TIMING 0

CT1 BIT(WRITE)0D9H ;I2CFG.1 - CLOCK TIMING 1

TIRUN BIT(WRITE)0DCH ;I2CFG.4 - START/STOP TIMER 1

CLRTI BIT(WRITE)0DDH ;I2CFG.5 - CLEAR TIMER 1 INTERRUPT FLAG

MASTRQ BIT(WRITE)0DEH ;I2CFG.6 - MASTER I2C

SLAVEN BIT(WRITE)0DFH ;I2CFG.7 - SLAVE I2C

RSTP BIT(READ) 0F8H ;I2STA.0 - XMIT STOP CONDITION

RSTR BIT(READ) 0F9H ;I2STA.1 - XMIT REPEAT STOP COND.

MAKSTP BIT(READ) 0FAH ;I2STA.2 - STOP CONDITION

MAKSTR BIT(READ) 0FBH ;I2STA.3 - START CONDITION

XACTV BIT(READ) 0FCH ;I2STA.4 - XMIT ACTIVE

XDATA BIT(READ) 0FDH ;I2STA.5 - CONTENT OF XMIT BUFFER

RIDLE BIT(READ) 0FEH ;I2STA.6 - SLAVE IDLE FLAG

**

**

for the 83C552/80C552

CR0 BIT 0D8H ;S1CON.0 - CLOCK RATE 0

CR1 BIT 0D9H ;S1CON.1 - CLOCK RATE 1

AA BIT 0DAH ;S1CON.2 - ASSERT ACKNOWLEDGE

SI BIT 0DBH ;S1CON.3 - SERIAL I/O INTERRUPT

STO BIT 0DCH ;S1CON.4 - STOP FLAG

STA BIT 0DDH ;S1CON.5 - START FLAG

ENS1 BIT 0DEH ;S1CON.6 - ENABLE SERIAL I/O

ECT0 BIT 0E8H ;IEN1.0 - ENABLE T2 CAPTURE 0

ECT1 BIT 0E9H ;IEN1.1 - ENABLE T2 CAPTURE 1

ECT2 BIT 0EAH ;IEN1.2 - ENABLE T2 CAPTURE 2

ECT3 BIT 0EBH ;IEN1.3 - ENABLE T2 CAPTURE 3

ECM0 BIT 0ECH ;IEN1.4 - ENABLE T2 COMPARATOR 0

ECM1 BIT 0EDH ;IEN1.5 - ENABLE T2 COMPARATOR 1

ECM2 BIT 0EEH ;IEN1.6 - ENABLE T2 COMPARATOR 2

ET2 BIT 0EFH ;IEN1.7 - ENABLE T2 OVERFLOW

Chap. B: PRE-DEFINED BYTE AND BIT ADDRESSES 77

PCT0 BIT 0F8H ;IP1.0 - T2 CAPTURE REGISTER 0

PCT1 BIT 0F9H ;IP1.1 - T2 CAPTURE REGISTER 1

PCT2 BIT 0FAH ;IP1.2 - T2 CAPTURE REGISTER 2

PCT3 BIT 0FBH ;IP1.3 - T2 CAPTURE REGISTER 3

PCM0 BIT 0FCH ;IP1.4 - T2 COMPARATOR 0

PCM1 BIT 0FDH ;IP1.5 - T2 COMPARATOR 1

PCM2 BIT 0FEH ;IP1.6 - T2 COMPARATOR 2

PT2 BIT 0FFH ;IP1.7 - T2 OVERFLOW

**

**

for the 80C517/80C537

F1 BIT 0D1H ;PSW.1 - FLAG 1

MX0 BIT 0D8H ;ADCON0.0 - ANALOG INPUT CH SELECT BIT 0

MX1 BIT 0D9H ;ADCON0.1 - ANALOG INPUT CH SELECT BIT 1

MX2 BIT 0DAH ;ADCON0.2 - ANALOG INPUT CH SELECT BIT 2

ADM BIT 0DBH ;ADCON0.3 - A/D CONVERSION MODE

BSY BIT 0DCH ;ADCON0.4 - BUSY FLAG

CLK BIT 0DEH ;ADCON0.5 - SYSTEM CLOCK ENABLE

BD BIT 0DFH ;ADCON0.7 - BAUD RATE ENABLE

**

**

for the 80C154/83C154

ALF BIT 0F8H ;IOCON.0 - CPU POWER DOWN MODE CONTROL

P1F BIT 0F9H ;IOCON.1 - PORT 1 HIGH IMPEDANCE

P2F BIT 0FAH ;IOCON.2 - PORT 2 HIGH IMPEDANCE

P3F BIT 0FBH ;IOCON.3 - PORT 3 HIGH IMPEDANCE

IZC BIT 0FCH ;IOCON.4 - 10K TO 100 K OHM SWITCH (P1-3)

SERR BIT 0FDH ;IOCON.5 - SERIAL PORT RCV ERROR FLAG

T32 BIT 0FEH ;IOCON.6 - 32 BIT TIMER SWITCH

WDT BIT 0FFH ;IOCON.7 - WATCHDOG TIMER CONTROL

78 Chap. B: PRE-DEFINED BYTE AND BIT ADDRESSES

Appendix C

RESERVED SYMBOLS

The following is a list of reserved symbols used by the Cross Assembler. These symbols
cannot be rede�ned.

A AB ACALL ADD ADDC AJMP AND ANL
AR0 AR1 AR2 AR3 AR4 AR5 AR6 AR7
BIT BSEG C CALL CJNE CLR CODE CPL
CSEG DA DATA DB DBIT DEC DIV DJNZ
DPTR DS DSEG DW END EQ EQU GE
GT HIGH IDATA INC ISEG JB JBC JC
JMP JNB JNC JNZ JZ LCALL LE LJMP
LOW LT MOD MOV MOVC MOVX MUL NE
NOP NOT OR ORG ORL PC POP PUSH
R0 R1 R2 R3 R4 R5 R6 R7
RET RETI RL RLC RR RRC SET SETB
SHL SHR SJMP SUBB SWAP USING XCH XCHD
XDATA XOR XRL XSEG

80 Chap. C: RESERVED SYMBOLS

Appendix D

CROSS ASSEMBLER CHARACTER SET

---------------------------+----------------+-------------------

| PRINTABLE | ASCII CODE

CHARACTER NAME | FORM | HEX | DECIMAL

---------------------------+----------------+---------+----------

Horizontal Tab | | 09 | 9

Line Feed | | 0A | 10

Carriage Return | | 0D | 13

Space | | 20 | 32

Exclamation Point | ! | 21 | 33

Pound Sign | # | 23 | 35

Dollar Sign | $ | 24 | 36

Percent Sign | % | 25 | 37

Ampersand | & | 26 | 38

Apostrophe | ' | 27 | 39

Left Parenthesis | (| 28 | 40

Right Parenthesis |) | 29 | 41

Asterisk | * | 2A | 42

Plus sign | + | 2B | 43

Comma | , | 2C | 44

Hyphen | - | 2D | 45

Period | . | 2E | 46

Slash | / | 2F | 47

Number 0 | 0 | 30 | 48

" 1 | 1 | 31 | 49

" 2 | 2 | 32 | 50

" 3 | 3 | 33 | 51

" 4 | 4 | 34 | 52

" 5 | 5 | 35 | 53

" 6 | 6 | 36 | 54

" 7 | 7 | 37 | 55

" 8 | 8 | 38 | 56

" 9 | 9 | 39 | 57

Colon | : | 3A | 58

Semi-colon | ; | 3B | 59

Left Angle Bracket | < | 3C | 60

Equal Sign | = | 3D | 61

Right Angle Bracket | > | 3E | 62

Question Mark | ? | 3F | 63

At Sign | @ | 40 | 64

Upper Case A | A | 41 | 65

" " B | B | 42 | 66

" " C | C | 43 | 67

" " D | D | 44 | 68

" " E | E | 45 | 69

82 Chap. D: CROSS ASSEMBLER CHARACTER SET

" " F | F | 46 | 70

" " G | G | 47 | 71

" " H | H | 48 | 72

---------------------------+----------------+-------------------

| PRINTABLE | ASCII CODE

CHARACTER NAME | FORM | HEX | DECIMAL

---------------------------+----------------+---------+----------

Upper Case I | I | 49 | 73

" " J | J | 4A | 74

" " K | K | 4B | 75

" " L | L | 4C | 76

" " M | M | 4D | 77

" " N | N | 4E | 78

" " O | O | 4F | 79

" " P | P | 50 | 80

" " Q | Q | 51 | 81

" " R | R | 52 | 82

" " S | S | 53 | 83

" " T | T | 54 | 84

" " U | U | 55 | 85

" " V | V | 56 | 86

" " W | W | 57 | 87

" " X | X | 58 | 88

" " Y | Y | 59 | 89

" " Z | Z | 5A | 90

Underscore | _ | 5F | 95

Lower Case A | a | 61 | 97

" " B | b | 62 | 98

" " C | c | 63 | 99

" " D | d | 64 | 100

" " E | e | 65 | 101

" " F | f | 66 | 102

" " G | g | 67 | 103

" " H | h | 68 | 104

" " I | i | 69 | 105

" " J | j | 6A | 106

" " K | k | 6B | 107

" " L | l | 6C | 108

" " M | m | 6D | 109

" " N | n | 6E | 110

" " O | o | 6F | 111

" " P | p | 70 | 112

" " Q | q | 71 | 113

" " R | r | 72 | 114

" " S | s | 73 | 115

" " T | t | 74 | 116

" " U | u | 75 | 117

" " V | v | 76 | 118

" " W | w | 77 | 119

" " X | x | 78 | 120

" " Y | y | 79 | 121

" " Z | z | 7A | 122

	8051 Cross Assembler User's Manual
	PURCHASE TERMS AND CONDITIONS
	DISCLAIMER OF ALL WARRANTIES AND LIABILITY
	Chapter 1: 8051 Overview
	1.1 Introduction
	1.2 8051 Architecture
	1.3 Summary of the 8051 Family of Components
	1.4 References
	Table 1.1: 8051 variants.

	Chapter 2: 8051 CROSS ASSEMBLER OVERVIEW
	2.1 Introduction
	2.2 Symbols
	2.3 Labels
	2.4 Assembler Controls
	Table 2.1: Cross Assembler controls.
	Table 2.2: Cross Assembler directives.
	2.5 Assembler Directives
	2.6 8051 Instruction Mnemonics
	Table 2.3: 8051 instruction set mnemonics.
	2.7 Bit Addressing
	2.8 ASCII Literals
	2.9 Comments
	2.10 The Location Counter
	2.11 Syntax Summary
	Table 2.4: Cross Assembler number representations.
	2.12 Numbers and Operators
	Table 2.5: Cross Assembler arithmetic and relational operations.
	Table 2.6: Cross Assembler operator precedence.
	2.13 Source File Listing
	2.14 Object File

	Chapter3: RUNNING THE 8051 CROSS ASSEMBLER ON PC-DOS/MS-DOS
	3.1 Cross Assembler Files
	3.2 Minimum System Requirements
	3.3 Running the Cross Assembler
	3.4 Example Running the Cross Assembler
	3.5 DOS Hints and Suggestions
	3.6 References

	Chapter 4: 8051 INSTRUCTION SET
	4.1 Notation
	4.2 8051 Instruction Set Summary
	Table 4.1: 8051 instruction set.

	Chapter 5: 8051 CROSS ASSEMBLER DIRECTIVES
	5.1 Introduction
	5.2 Symbol De nition Directives
	5.2.1 EQU Directive
	5.2.2 SET Directive
	5.2.3 BIT Directive
	5.2.4 CODE Directive
	5.2.5 DATA Directive
	5.2.6 IDATA Directive
	5.2.7 XDATA Directive

	5.3 Segment Selection Directives
	5.4 Memory Reservation and Storage Directives
	5.4.1 DS Directive
	5.4.2 DBIT Directive
	5.4.3 DB Directive
	5.4.4 DW Directive

	5.5 Miscellaneous Directives
	5.5.1 ORG Directive
	5.5.2 USING DIRECTIVE
	5.5.3 END Directive

	5.6 Conditional Assembly Directives
	5.6.1 IF, ELSE and ENDIF Directive

	Chapter 6: 8051 CROSS ASSEMBLER CONTROLS
	6.1 Introduction
	6.2 Assembler Control Descriptions
	6.2.1 $DATE(date)
	6.2.2 $DEBUG(le) and $NODEBUG
	6.2.3 $EJECT
	6.2.4 $INCLUDE(le)
	6.2.5 $LIST and $NOLIST
	6.2.6 $MOD and $NOMOD
	6.2.7 $OBJECT(le) and $NOOBJECT
	6.2.8 $PAGING and $NOPAGING
	6.2.9 $PAGELENGTH(n)
	6.2.10 $PAGEWIDTH(n)
	6.2.11 $PRINT(le) and $NOPRINT
	6.2.12 $SYMBOLS and $NOSYMBOLS
	6.2.13 $TITLE(string)

	Chapter 7: 8051 CROSS ASSEMBLER MACRO PROCESSOR
	7.1 Introduction
	7.2 Macro De nition
	7.3 Special Macro Operators
	7.4 Using Macros
	7.4.1 NESTING MACROS

	Chapter 8: 8051 CROSS ASSEMBLER ERROR CODES
	8.1 Introduction
	8.2 Explanation of Error Messages
	8.2.1 ERROR #1: Illegal character
	8.2.2 ERROR #2: Unde ned symbol
	8.2.3 ERROR #3: Duplicate symbol
	8.2.4 ERROR #4: Illegal digit for radix
	8.2.5 ERROR #5: Number too large
	8.2.6 ERROR #6: Missing END directive
	8.2.7 ERROR #7: Illegal opcode/directive after label
	8.2.8 ERROR #8: Illegal assembly line
	8.2.9 ERROR #9: Text beyond END directive
	8.2.10 ERROR #10: Illegal or missing expression
	8.2.11 ERROR #11: Illegal or missing expression operator
	8.2.12 ERROR #12: Unbalanced parentheses
	8.2.13 ERROR #13: Illegal or missing expression value
	8.2.14 ERROR #14: Illegal literal expression
	8.2.15 ERROR #15: Expression stack over ow
	8.2.16 ERROR #16: Division by zero
	8.2.17 ERROR #17: Illegal bit designator
	8.2.18 ERROR #18: Target address exceeds relative address range
	8.2.19 ERROR #20: Illegal operand
	8.2.20 ERROR #21: Illegal indirect register
	8.2.21 ERROR #22: Missing operand delimiter
	8.2.22 ERROR #23: Illegal or missing directive
	8.2.23 ERROR #24: Attempting to EQUate a previously SET symbol
	8.2.24 ERROR #25: Attempting to SET a previously EQUated symbol
	8.2.25 ERROR #26: Illegal SET/EQU expression
	8.2.26 ERROR #27: Illegal expression with forward reference
	8.2.27 ERROR #28: Address exceeds segment range
	8.2.28 ERROR #29: Expecting an EOL or COMMENT
	8.2.29 ERROR #30: Illegal directive with current active segment
	8.2.30 ERROR #31: Only two character string allowed
	8.2.31 ERROR #32: Byte de nition exceeds 255
	8.2.32 ERROR #33: Premature end of string
	8.2.33 ERROR #34: Illegal register bank number
	8.2.34 ERROR #35: Include le nesting exceeds 8
	8.2.35 ERROR #36: Illegal or missing argument
	8.2.36 ERROR #37: Illegal control statement
	8.2.37 ERROR #38: Unable to open le
	8.2.38 ERROR #39: Illegal le speci cation
	8.2.39 ERROR #40: Program synchronization error
	8.2.40 ERROR #41: Insu cient memory
	8.2.41 ERROR #42: More errors detected, not listed
	8.2.42 ERROR #43: ENDIF without IF
	8.2.43 ERROR #44: Missing ENDIF
	8.2.44 ERROR #45: Illegal or missing macro name
	8.2.45 ERROR #46: Macro nesting too deep
	8.2.46 ERROR #47: Number of parameters doesn't match de nition
	8.2.47 ERROR #48: Illegal parameter speci cation
	8.2.48 ERROR #49: Too many parameters
	8.2.49 ERROR #50: Line exceeds 255 characters

	Appendix A: SAMPLE PROGRAM AND LISTING
	A.1 Source File
	A.2 Source File Listing

	Appendix B: PRE-DEFINED BYTE AND BIT ADDRESSES
	B.1 Pre-de ned Byte Addresses
	B.2 Pre-de ned Bit Addresses

	Appendix C: RESERVED SYMBOLS
	Appendix D: CROSS ASSEMBLER CHARACTER SET

