
Running Foundation from a
Makefile
RELEASE DATE: 12/5/99 ©1999 BY X ENGINEERING SOFTWARE SYSTEMS CORP.

nto
nd
en-

to

-
ever

ust

files
s,

 the

the
 all
Introduction

In this document, I will describe how I use a makefile to compile VHDL code i
bitstreams for XILINX FPGAs and CPLDs. The makefile sets up the options a
runs the individual software tools in Foundation. This gives me the following b
efits:

Automation: I can start a makefile script running and leave. I no longer have
guide Foundation through the phases of compilation using the GUI.

Fewer Errors: It’s always possible to make an error or forget to set an option
when I point and click with the Foundation GUI. The makefile encapsu
lates the options for my design and they are consistently applied when
I recompile.

Simpler Archiving: I can use a revision control system to archive my design j
by checking-in the makefile, VHDL files, constraint files, and a few files
containing the design options. I don’t have to store any strange binary
which are incompatible between different versions of the software tool
and I don’t need to store the entire project directory hierarchy.

That said, there are disadvantages to using a makefile when I am developing
first version of a design. The non-interactive nature of makefiles makes error
reporting and correction of my VHDL files more difficult. And it is difficult to
remember the correct settings for all the compilation options. So I like to use
Foundation GUI when I develop a design. Once the design is working, I move
the settings for the options into the appropriate places in my scripts.
XESS CORP. WWW.XESS.COM 1

 util-

-
tion
Caveats

I am assuming you have the following UNIX-like utilities on your PC: make, rm,
cat , echo , and mv. These are necessary to run the makefile. You can get these
ities from several sites on the Web.

You will also need the fe_shell utility that lets you run the FPGA Express syn
thesizer from a command script. This utility is not included in the Student Edi
of the XILINX Foundation tools.
XESS CORP. WWW.XESS.COM 2

the

s.

e

BIT

a-
Makefile Design Flow

Here is a high-level view of how I use makefiles to compile a bitstream:

1. I edit the files which store the parameters which control some aspects of
synthesis and implementation process. These files are fe.fst , hitop.ctl ,
and bitgen.ut .

2. I edit the makefile which controls the overall sequence of compilation step
This typically involves specifying the names of the VHDL source files and
libraries and selecting the type of device which will be targeted.

3. I invoke the makefile. The makefile starts FPGA Express to synthesize th
VHDL into an XNF file (XILINX netlist format file). Then the makefile runs
the appropriate design implementation tools to generate either an FPGA .
file or a CPLD .SVF file.

The Makefile
A makefile for compiling a simple VHDL design for an XC4000 FPGA and an
XC9500 CPLD is shown below. It looks complicated. XILINX built their Found
tion GUI to hide all this from you. I will explain what each line does below.

1 FEXP = C:/fndtn/synth/bin-wi~1/fe_shell.exe
2 FEXP_FST_TEMPLATE = fe.fst
3 CTL_TEMPLATE = hitop.ctl
4 TOP = leddcd
5
6 all: xs40-005xl xs95-108
7
8 clean:
9 rm -f *.log *.bld *.mrp *.ngd *.pro *.pad \

10 *.pcf *.xbt *.jed *.ngm *.tsp *.ngo *.gyd \
11 *.lst *.vm6 *.cmd *.ncd *.dly *.bgn *.drc \
12 *.ll *.rpt *.par
13
14 extra_clean: clean
15 rm -rf $(TOP)
XESS CORP. WWW.XESS.COM 3

16 rm -rf DPM_NET
17 rm -f *.bit
18 rm -f *.svf
19
20 xs40-005xl: FEXP_TARGET = XC4000XL
21 xs40-005xl: FEXP_DEVICE = 4005XLPC84
22 xs40-005xl: DEVICE = xc4005xl-3-pc84
23 xs40-005xl: BIT_FILE = ledcd05x.bit
24 xs40-005xl: FST_FILE = fe05xl.fst
25 xs40-005xl: VHDL = “{leddcd.vhd}”
26 xs40-005xl: LIB = “xsboard”
27 xs40-005xl: LIB_VHDL = “{xsboard.vhd}”
28 xs40-005xl: FPGA_UCF = leddcd40.ucf
29 xs40-005xl:
30 $(mk_fpga_fst_file)
31 $(mk_fpga)
32 rm -f $(FST_FILE)
33
34 xs95-108: FEXP_TARGET = XC9500
35 xs95-108: FEXP_DEVICE = 95108PC84
36 xs95-108: CTL_DEVICE = XC95108-15-PC84
37 xs95-108: DEVICE = XC95108
38 xs95-108: SVF_FILE = ledcd108.svf
39 xs95-108: FST_FILE = fe108.fst
40 xs95-108: VHDL = “{leddcd.vhd}”
41 xs95-108: LIB = “xsboard”
42 xs95-108: LIB_VHDL = “{xsboard.vhd}”
43 xs95-108: CPLD_UCF = leddcd95.ucf
44 xs95-108:
45 $(mk_cpld_fst_file)
46 $(mk_cpld)
47 rm -f $(FST_FILE)
48
49
50 define mk_fpga_fst_file
51 echo “set proj $(TOP)” > $(FST_FILE)
52 echo “set vhdl $(VHDL)” >> $(FST_FILE)
53 echo “set top $(TOP)” >> $(FST_FILE)
54 echo “set chip $(TOP)” >> $(FST_FILE)
55 echo “set target $(FEXP_TARGET)” >> $(FST_FILE)
56 echo “set device $(FEXP_DEVICE)” >> $(FST_FILE)
57 echo “set lib $(LIB)” >> $(FST_FILE)
XESS CORP. WWW.XESS.COM 4

58 echo “set lib_vhdl $(LIB_VHDL)” >> $(FST_FILE)
59 echo “proj_fsm_coding_style = \”onehot\”” >> $(FST_FILE)
60 cat $(FEXP_FST_TEMPLATE) >> $(FST_FILE)
61 endef
62
63 define mk_fpga
64 $(FEXP) -f $(FST_FILE)
65 ngdbuild -p $(DEVICE) -uc $(FPGA_UCF) -dd . -nt on \
66 DPM_NET/$(TOP).xnf $(TOP).ngd
67 map -p $(DEVICE) -o map.ncd $(TOP).ngd $(TOP).pcf
68 par -x -w -ol 2 -d 0 map.ncd $(TOP).ncd $(TOP).pcf
69 bitgen $(TOP).ncd -l -w -f bitgen.ut
70 mv $(TOP).bit $(BIT_FILE)
71 endef
72
73 define mk_cpld_fst_file
74 echo “set proj $(TOP)” > $(FST_FILE)
75 echo “set vhdl $(VHDL)” >> $(FST_FILE)
76 echo “set top $(TOP)” >> $(FST_FILE)
77 echo “set chip $(TOP)” >> $(FST_FILE)
78 echo “set target $(FEXP_TARGET)” >> $(FST_FILE)
79 echo “set device $(FEXP_DEVICE)” >> $(FST_FILE)
80 echo “set lib $(LIB)” >> $(FST_FILE)
81 echo “set lib_vhdl $(LIB_VHDL)” >> $(FST_FILE)
82 echo “proj_fsm_coding_style = \”binary\”” >> $(FST_FILE)
83 cat $(FEXP_FST_TEMPLATE) >> $(FST_FILE)
84 endef
85
86 define mk_cpld
87 $(FEXP) -f $(FST_FILE)
88 ngdbuild -p $(DEVICE) -uc $(CPLD_UCF) -dd . -nt on \
89 DPM_NET/$(TOP).xnf $(TOP).ngd
90 echo DEVICE_OPTIONS: $(CTL_DEVICE) > $(TOP).ctl
91 cat $(CTL_TEMPLATE) >> $(TOP).ctl
92 hitop -f $(TOP).ngd -s -o $(TOP)
93 hplusas6 -i $(TOP) -s -a -l $(TOP).log -o $(TOP)
94 hprep6 -i $(TOP) -r jed -a
95 echo part $(DEVICE):$(TOP) > $(TOP).cmd
96 echo program $(TOP) -j $(TOP) >> $(TOP).cmd
97 echo quit >> $(TOP).cmd
98 rm -f $(TOP).SVF
99 jtagprog -svf -batch $(TOP).cmd
XESS CORP. WWW.XESS.COM 5

ot
ion.)
sis
s

script
esis

at
te
 dif-

rated

es -

d

 files
 gen-
100 mv $(TOP).SVF $(SVF_FILE)
101 rm -f $(TOP).cmd
102 rm -f $(TOP).ctl
103 endef

Lines 1-2: The FEXP variable is defined that points to the location of my
fe_shell executable. (Yours may be in a different place or you might n
even have this program if you are using the Student Edition of Foundat
fe_shell is a program that lets you control the FPGA Express synthe
tool using text commands. It will also execute a sequence of command
stored in a script file. The FEXP_FST_TEMPLATE variable points to the
basic synthesis script template that I use. I keep a separate synthesis
template in each of my project directories in case I need different synth
options for a particular project.

Line 3: The CTL_TEMPLATE variable points to the file which stores the options th
control the process of fitting the design into a CPLD. I keep a separa
CPLD control template in each of my project directories in case I need
ferent fitting options for a particular project.

Line 4: The TOP variable stores the name of the top-level module in my VHDL
design. This name is used as the base name for a lot of the files gene
during the compilation process.

Line 6: I list my targets here. In this example I am targeting an XS40-005XL
Board (which has an XC4005XL FPGA on it) and an XS95-108 Board
(which has an XC95108 CPLD on it). These are just my personal choic
you can use any names for targets. To compile the bitfiles for both the
XS40-005XL Board and the XS95-108 Board, I just issue the comman
make all .

Lines 8-18: These are two other targets I use to make it easy to remove all the
generated during the compilation process. To remove all the extra files
erated in my top-level directory, I type make clean . To start from a clean
XESS CORP. WWW.XESS.COM 6

40

.
nd

-
 will
 in

on’t

ces.

e
he

e

e

95
slate I type make extra_clean which removes all the extra files, subdi-
rectories, and previously-compiled bitstream files.

Lines 20-28: These lines set the variables for compiling a bitstream for the XS
Board. Each line starts with the name of one of the targets from line 6
(xs40-005xl in this case). The FEXP_TARGET variable lists the device
family that the FPGA Express synthesizer will be targeting, while the
FEXP_DEVICE variable indicates the particular device within that family
The FST_FILE variable stores the name of the file that holds the comma
script for the synthesizer. The DEVICE variable tells the Foundation imple
mentation tools the which device, speed grade, and package type they
be targeting. In this example, the target is a -3 speed XC4005XL FPGA
an 84-pin PLCC. (The DEVICE variable seems redundant given that we
already have this information in the FEXP_TARGET and FEXP_DEVICE
variables, but the variables are intended for two separate tools and I d
have a simple way to generate one from the other.) The BIT_FILE variable
indicates the file where I want the final bitstream stored. The VHDL variable
lists the names of the VHDL source files in my design separated by spa
(There is only the leddcd.vhd VHDL file in this design.) The LIB vari-
able lists the name of the master library for my design. The LIB_VHDL
variable holds the list of VHDL source files that are to be included in th
master library. (If you don’t use a library in your design, just set LIB to t
string \”\” .) The FPGA_UCF variable points to the file that stores the pin
assignments and timing constraints for my design.

Lines 29-32: The actual synthesis and implementation for the FPGA occur on
these lines. $(mk_fpga_fst_file) executes a procedure defined in the
makefile (lines 50-61) that generates the script file for controlling the
FPGA Express synthesizer. Then $(mk_fpga) executes another procedur
defined in the makefile (lines 63-71) that runs the synthesizer and the
implementation tools to generate a bitstream. The last line removes th
script that controls the synthesizer.

Lines 34-43: These lines set the variables for compiling a bitstream for the XS
Board. Each line starts with the name of one of the targets from line 6
(xs95-108 in this case). The FEXP_TARGET variable lists the device fam-
XESS CORP. WWW.XESS.COM 7

.
nd

 they
 in

dy

 sim-

here

r
g
n-

e

e

PGA
he

tyle
ily that the FPGA Express synthesizer will be targeting, while the
FEXP_DEVICE variable indicates the particular device within that family
The FST_FILE variable stores the name of the file that holds the comma
script for the synthesizer. The CTL_DEVICE variable tells the Foundation
implementation tools the which device, speed grade, and package type
will be targeting. In this example, the target is a -15 ns XC95108 CPLD
an 84-pin PLCC. The DEVICE variable names the generic family of
devices that will be targeted by the implementation tools. (The
CTL_DEVICE and DEVICE variables seem redundant given that we alrea
have this information in the FEXP_TARGET and FEXP_DEVICE variables,
but the variables are intended for two separate tools and I don’t have a
ple way to generate one from the other.) The SVF_FILE variable indicates
the file where I want the final bitstream stored. The VHDL variable lists the
names of the VHDL source files in my design separated by spaces. (T
is only the leddcd.vhd VHDL file in this design.) The LIB variable lists
the name of the master library for my design. The LIB_VHDL variable
holds the list of VHDL source files that are to be included in the maste
library. (If you don’t use a library in your design, just set LIB to the strin
\”\” .) The CPLD_UCF variable points to the file that stores the pin assig
ments and timing constraints for my design.

Lines 44-47: The actual synthesis and implementation for the CPLD occur on
these lines. $(mk_cpld_fst_file) executes a procedure defined in the
makefile (lines 73-84) that generates the script file for controlling the
FPGA Express synthesizer. Then $(mk_cpld) executes another procedur
defined in the makefile (lines 86-103) that runs the synthesizer and the
implementation tools to generate a bitstream. The last line removes th
script that controls the synthesizer.

Lines 50-61: The mk_fpga_fst_file procedure is defined on these lines. This
procedure generates the script file that controls the operations of the F
Express synthesizer. The first eight lines of this procedure just set up t
variables in the synthesizer script file pointed to by the FST_FILE variable.
These variables define the project name, VHDL files, top-level module
name, chip name, targeted FPGA family, FPGA family device, VHDL
master library, and master library VHDL source files. Then the coding s
XESS CORP. WWW.XESS.COM 8

After
 acti-

hen

is
 of
the

PGA
he

tyle

-
After
 acti-
for finite-state machines is set to onehot (which is usually the best setting
for FPGAs). Finally, the commands in the FEXP_FST_TEMPLATE file are
appended to the file pointed to by FST_FILE . At this point, a complete
synthesis script for an FPGA exists in the file pointed to by FST_FILE.

Lines 63-71: These lines define the mk_fpga procedure. The first line of the pro-
cedure passes the synthesis script to the FPGA Express synthesizer.
the synthesizer completes its operations, the next line in the procedure
vates the ngdbuild implementation tool. ngdbuild converts the XILINX
netlist file created in DPM_NET/$(TOP).xnf by the synthesizer into the
NGD format that is understood by the rest of the implementation tools. T
the map tool is activated that maps the circuitry described in the
$(TOP).ngd file to the architecture of the FPGA device. The mapping
passed to the par tool on the next line which performs a place-and-route
the circuitry. Finally, the bitstream for the routed circuit is generated by
bitgen tool under the influence of the options stored in the bitgen.ut
file. The bitstream file is moved into the file pointed to by the BIT_FILE
variable. (I usually get these command lines from the fe.log file in the
xproj/ver i /rev j subdirectory after I have finished developing the
design using the Foundation GUI.)

Lines 73-84: The mk_cpld_fst_file procedure is defined on these lines. This
procedure generates the script file that controls the operations of the F
Express synthesizer. The first eight lines of this procedure just set up t
variables in the synthesizer script file pointed to by the FST_FILE variable.
These variables define the project name, VHDL files, top-level module
name, chip name, targeted CPLD family, CPLD family device, VHDL
master library, and master library VHDL source files. Then the coding s
for finite-state machines is set to binary (which is usually the best setting
for CPLDs). Finally, the commands in the FEXP_FST_TEMPLATE file are
appended to the file pointed to by FST_FILE . At this point, a complete
synthesis script for an CPLD exists in the file pointed to by FST_FILE.

Lines 86-103: These lines define the mk_cpld procedure. The first line of the pro
cedure passes the synthesis script to the FPGA Express synthesizer.
the synthesizer completes its operations, the next line in the procedure
XESS CORP. WWW.XESS.COM 9

ext,
in
-
 the

C

en

is
le
vates the ngdbuild implementation tool. ngdbuild converts the XILINX
netlist file created in DPM_NET/$(TOP).xnf by the synthesizer into the
NGD format that is understood by the rest of the implementation tools. N
a control file that holds the various CPLD fitting parameters is created
the file with the name $(BASE).ctl . The first line of the control file spec
ifies the type of CPLD that is being targeted. Then the options stored in
file pointed to by CTL_TEMPLATE are appended to the control file. The
control file directs the operations of the hitop , hplusas6 , and hprep6
tools on the next three lines. (I usually get these three lines from the
fe.log file in the xproj/ver i /rev j subdirectory after I have finished
developing the design using the Foundation GUI.) The resulting JEDE
file output by hprep6 must be converted to an SVF bitstream file. jtag-
prog is directed to generate the SVF file for given type of CPLD and th
terminate by the three commands stored in the $(TOP).cmd file. The bit-
stream file is moved into the file pointed to by the SVF_FILE variable.
Then the command and control files which were created previously are
removed.

The Synthesis Script Template (fe.fst)
The synthesis script template is stored in a file pointed to by the
FEXP_FST_TEMPLATE variable in the makefile. The template contains synthes
commands which don’t usually change from one design to another. An examp
script template that I often use is shown below.

1 set export_dir DPM_NET
2
3 file delete -force $proj
4
5 create_project -dir . $proj
6
7 open_project $proj
8
9 proj_export_timing_constraints = “no”

10 proj_fsm_when_others = “safest”
11 proj_xlx_ppr = “M1”
12 proj_default_clock_frequency = 50
13
XESS CORP. WWW.XESS.COM 10

ign-

14 if {$lib != ““} {
15 create_library $lib
16 foreach i $lib_vhdl {
17 add_file -library $lib -format VHDL $i
18 }
19 }
20
21 foreach i $vhdl {
22 add_file -format VHDL $i
23 }
24
25 analyze_file -progress
26
27 create_chip -progress -target $target -device $device -name $chip $top
28
29 current_chip $chip
30
31 set opt_chip $chip-Optimized
32
33 optimize_chip -progress -name $opt_chip
34
35 list_message
36
37 file delete -force $export_dir
38 file mkdir $export_dir
39
40 export_chip -progress -dir $export_dir
41
42 close_project
43
44 exit

This script is adapted to various designs when the makefile prepends the ass
ments for the proj , vhdl , top , chip , target , device , lib , and lib_vhdl
variables. The template then performs the following functions:

Line 1: This line specifies the subdirectory where FPGA Express will place its
synthesis results. In this example, the subdirectory is hard-coded to
DPM_NET.
XESS CORP. WWW.XESS.COM 11

rent

e

 to a

ound

eci-

y.

l

ily

 chip

-

hip
Lines 3-7: Any existing project with the same name as that stored in the proj vari-
able will be deleted. This removes any old files that could affect the cur
synthesis process. Then a new project with the name stored in the proj
variable is created and opened.

Line 9: FPGA Express is directed not to export any timing constraints from th
synthesis process on to the implementation tools.

Line 10: When VHDL is synthesized, all state machines are coded to transition
safe state if an unspecified state is ever entered.

Line 11: The place-and-route implementation tools is specified to be the one f
in the XILINX M1 tools.

Line 12: The minimum operational frequency for the synthesized design is sp
fied to be 50 MHz.

Lines 14-19: If the master library name in lib is not blank, then the VHDL source
files listed in the lib_vhdl variable are each added to the master librar

Lines 21-23: The VHDL source files listed in the vhdl variable are added to the
project.

Line 25: The VHDL files are analyzed for syntax errors. Any syntax errors wil
cause the script to terminate.

Line 27: The VHDL source is synthesized into a netlist for the given target fam
and device. The top variable tells the synthesizer which module is at the
top of the design hierarchy. The synthesized netlist is associated with a
having the name stored in the chip variable.

Line 29: The synthesized chip is specified as the current chip that will be opti
mized.

Line 31: The variable opt_chip is declared and set to the name of the current c
with a suffix of “-Optimized” .
XESS CORP. WWW.XESS.COM 12

ized

s

ted

e

of a
Line 33: The synthesized netlist output by the operations on line 27 are optim
for the target device architecture.

Line 35: This line directs the FPGA Express to output various status message
which occur during the synthesis process.

Lines 37-38: The directory where the optimized netlist will be exported is dele
(to remove any old netlists) and then recreated.

Line 40: The netlist from the optimization step is exported as an XNF file to th
directory named in export_dir .

Line 42: The current project is closed.

Line 44: The script terminates.

The Bitstream Generator Control File (bitgen.ut)
This file specifies the options that control the FPGA bitstream generator. bit-
gen.ut is not used when I generate SVF files for CPLD devices. An example
bitgen.ut file is shown below:

1 -g ConfigRate:SLOW
2 -g TdoPin:PULLNONE
3 -g M1Pin:PULLNONE
4 -g DonePin:PULLUP
5 -g CRC:enable
6 -g StartUpClk:CCLK
7 -g SyncToDone:no
8 -g DoneActive:C1
9 -g OutputsActive:C3

10 -g GSRInactive:C4
11 -g ReadClk:CCLK
12 -g ReadCapture:enable
13 -g ReadAbort:disable
14 -g M0Pin:PULLNONE
15 -g M2Pin:PULLNONE
XESS CORP. WWW.XESS.COM 13

d in

l

d in
In general, I usually copy the bitgen.ut file generated by the Foundation GUI
after I finally have the design development completed. The file is usually foun
the xproj/ver i /rev j subdirectory where i and j are the version and revision
number of my final design.

The CPLD Fitter Control Template File (hitop.ctl)
This file specifies the options which control the CPLD fitting process. It is not
used if I am only targeting FPGA devices. An example of a CPLD fitter contro
file is shown below:

1 DT_SYNTHESIS:TRUE
2 MC9500_INPUT_LIMIT:36
3 GSR_OPT:TRUE
4 FASTCLOCK_OPT:TRUE
5 FOE_OPT:TRUE
6 MC9500_PTERM_LIMIT:20
7 TIMING_OPT:TRUE
8 LOWPWR:STD
9 SLEW:FAST

10 DRIVE_UNUSED_IO:FALSE
11 IGNORE_PIN_ASSIGNMENT:FALSE
12 FM_PARTITION:TRUE
13 CREATE_LOCAL_FEEDBACK:TRUE
14 CREATE_PIN_FEEDBACK:TRUE
15 IGNORE_TSPEC:FALSE
16 MULTI_LEVEL_LOGIC_OPTIMIZATION:TRUE

In general, I usually copy the hitop.ctl file generated by the Foundation GUI
after I finally have the design development completed. The file is usually foun
the xproj/ver i /rev j subdirectory where i and j are the version and revision
number of my final design.
XESS CORP. WWW.XESS.COM 14

s:

t

 is

rlier.

he
LED Decoder Design Example

The example design included with this document consists of the following file

leddcd.vhd : This is the top-level module of a circuit which accepts a four-bit
input and displays the corresponding hexadecimal digit on a 7-segmen
LED.

xsboard.vhd : This is a library file that contains several modules, one of which
an LED decoder used by the top-level leddcd module.

leddcd40.ucf : This file contains the pin assignments for the leddcd design
when it is targeted to an XS40 Board.

leddcd95.ucf : This file contains the pin assignments for the leddcd design
when it is targeted to an XS95 Board.

fe.fst : This is the FPGA Express script template that was discussed earlier.

hitop.ctl : This is the CPLD fitter control file that was discussed earlier.

bitgen.ut : This is the bitstream generator control file that was discussed ea

makefile : This is the makefile that compiles the leddcd design for both the
XS40 and XS95 Boards.

Just place these files into a directory. The LED decoder is compiled for both t
XS40 and XS95 Boards by issuing the following command in a DOS window:

C:> make all

You can compile the design for either the XS40 or XS95 Board with the com-
mands:

C:> make xs40-005xl
XESS CORP. WWW.XESS.COM 15

 the
C:> make xs95-108

After the makefile is done, you will find the FPGA bitstream in ledcd05x.bit
and the CPLD bitstream in ledcd108.svf .

After compiling the design, you can clean the directory with the command:

C:> make clean

To clean the directory and remove the subdirectories and the bitstreams, use
command:

C:> make extra_clean
XESS CORP. WWW.XESS.COM 16

 files

the

A

et

.

Modifying the Files for Your Own Designs

Here is a summary of the steps I go through to develop a makefile and script
for a design:

1. Develop the initial version of the design using the Foundation GUI.

2. Create an empty directory for the project scripts and copy the makefile and
fe.fst files from the script directory of a previous project. (You could use
makefile and fe.fst files from the LED decoder example as your starting
point.) Then copy the bitgen.ut and hitop.ctl files from the xproj/
veri/revj directory created in step 1.

3. Set the following variables for each target architecture in the makefile:

TOP: Set it to the name of the top-level module of the design.

FEXP_TARGET: Set it to one of the family of devices recognized by FPG
Express.

FEXP_DEVICE: Set it to one of the members of the device family.

DEVICE: Set it to the detailed name of the FPGA device (e.g. DEVICE =
xc4010e-3-pc84) or the shortened name of the CPLD device
(e.g. DEVICE = XC95108).

CTL_DEVICE: For CPLD designs, set it to the detailed name of the targ
device (e.g. CTL_DEVICE = XC95108-15-PC84). This variable is
not used in FPGA designs.

BIT_FILE /SVF_FILE : Set these to the name of the final BIT or SVF file

VHDL: Set it to a space-separated list of VHDL files for the design (e.g.
VHDL = "{file1.vhd file2.vhd}").
XESS CORP. WWW.XESS.COM 17

e it

s
LIB : Set it to the name of the master library used in the design or mak
empty if no library is needed (i.e. LIB = \"\").

LIB_VHDL: Set it to the list of files to be included in the library using the
same space-separated format as with the VHDL variable.

FPGA_UCF/CPLD_UCF: Set these to the names of the pin assignment file
for the FPGA and CPLD designs.

4. Edit fe.fst to change or add FPGA Express settings.

5. Edit hitop.ctl to adjust fitter options for the CPLD.

6. Edit bitgen.ut to adjust bitmap generation options for the FPGA.
XESS CORP. WWW.XESS.COM 18

ple
s

hen

IX
 run
he
se

ution

the

ake

ive
“It Doesn’t Work!”

You may encounter problems when you try to compile the LED decoder exam
or designs of your own. You can usually solve VHDL syntax errors or problem
with option settings by first compiling the design using the Foundation GUI. T
you can extract the correct VHDL and the control options from the debugged
project and include them in your makefile and template files.

If you just can’t stand to use the Foundation GUI (i.e. you started with the UN
command line interface and you intend to die that way), then you will have to
the makefile and watch for error messages as they appear and then go into t
offending file and fix it. It’s not impossible to do, but it’s not the most efficient u
of your time. Any way, it’s your call so do what you want.

You may encounter problems you don’t immediately understand or whose sol
is not immediately obvious. First I will tell you what not to do: do not send email
to XESS Corp. requesting help! I have received a few too many messages over
years which read like this:

“I do as you say but when I run makefile it no working. What is
wrong? Please help me!”

Please! If I could fix problems based on a description like that, then I would m
my living as a psychic.

There are better ways to approach the problem. The first is to say:

“Well, I didn’t know how to use a makefile to run the XILINX tools
before, so if this script doesn’t work I’m no worse off than I was.
I’ll just chuck it and go back to doing it the way I used to.”

Surprisingly, this is usually a pretty good response. But for those who won’t g
up, you can employ the following attitude:
XESS CORP. WWW.XESS.COM 19

 the
“Well, the makefile isn’t running but I’ll bet it’s 95% of the way
there. I’m probably smarter than the guy that wrote it so I should be
able to figure out the last 5% and make it work for me.”

Then if you solve the problem, feel free to send me a good description of how
problem occurred and how you solved it. If I ever revise this document, I will
include your insights so that others can benefit from them.
XESS CORP. WWW.XESS.COM 20

e for
y fea-

iate
ne
Future Enhancements

The makefile and scripts I have described are simple but they get the job don
me. Their most noticeable deficiency is that they don’t use the file dependenc
tures of make. So all the files are recompiled from scratch whenever you run make.
It would be more efficient if the makefile recognized the existence of intermed
files and could resume the compilation process from that point. Maybe someo
else will make that enhancement.
XESS CORP. WWW.XESS.COM 21

	Running Foundation from a Makefile
	Introduction
	Caveats
	Makefile Design Flow
	The Makefile
	The Synthesis Script Template (fe.fst)
	The Bitstream Generator Control File (bitgen.ut)
	The CPLD Fitter Control Template File (hitop.ctl)

	LED Decoder Design Example
	Modifying the Files for Your Own Designs
	“It Doesn’t Work!”
	Future Enhancements

