

XSB-300E Parallel Port Interface

October 20, 2003 (Version 1.0) Application Note by D. Vanden Bout

Summary

This application note describes the default parallel port interface circuit that is programmed into the XC9572XL
CPLD on the XSB-300E Board. It also discusses how to change the parallel port interface to support other
features.

The Default Parallel Port Interface

Listing 1 shows the VHDL code for the default
parallel port interface that is programmed into the
XC9572XL CPLD on the XSB-300E Board. This
interface provides two functions:

• It transfers configuration bitstreams from the PC
to the SpartanIIE FPGA.

• It lets the PC and the SpartanIIE communicate
through the parallel port after the FPGA is
configured.

How the VHDL implements these functions is
described below.

Lines 40 and 41 just give more meaningful names to
some input signals.

The main functionality of the CPLD is defined by the
process starting on line 43. It begins by setting the
default values of some signals on lines 45–48. The
JTAG circuitry of the SpartanIIE FPGA is kept
quiescent so it cannot interfere by holding its clock
pin low on line 49.

The circuitry that actually controls the configuration of
the SpartanIIE device is described on lines 50–58.
On line 50, the CPLD pulls down the M0 mode pin of
the SpartanIIE device to set the FPGA into the Slave
Parallel configuration mode (the M1 and M2 mode
pins of the SpartanIIE are hard-wired on the XSB-
300E PCB). The PROGRAM pin for the SpartanIIE is
connected to data line D7 of the parallel port on line
51. A low level on D7 will initiate the configuration of
the SpartanIIE and its DONE pin will go low. The low
level on the DONE pin activates the functions
described on lines 55–58. Low levels are placed on
the chip-select and write-strobe of the SpartanIIE on
lines 56 and 57, respectively. This enables the
writing of byte-wide configuration data into the

SpartanIIE. These pins are released after DONE
goes high because they become general-purpose I/O
pins after configuration is completed.

The configuration data bytes arrive as two four-bit
nybbles over data lines D2–D5 (line 40). The upper
nybble of each configuration byte is stored in the
config_data register on the rising edge of the cclk
(lines 88–93). The inverse of parallel port data line
D0 drives the internal cclk signal (line 52), so the data
is latched into the config_data register on the falling
edge of D0.

The upper nybble in the config_data register is
concatenated with the lower nybble on the D2–D5
data lines to form a complete byte of configuration
data (line 58). The configuration clock for the
SpartanIIE is the inverse of the clock that controls the
config_data register (line 53). So the configuration
data is latched into the SpartanIIE on the falling edge
of cclk. The overall process of getting byte n of
configuration data into the SpartanIIE looks like this:

cclk

pp_d(5..2)

pp_d(0) and
fpga_cclk

n(7..4)

n(7..4)

n+1(7..4)

n+1(7..4)

n(3..0)

config_data

upper nybble latched

configuration byte
latched into SpartanIIE

Once all the configuration data enters the SpartanIIE,
it will raise its DONE pin. This activates the circuitry
described on lines 59–83 that allows the SpartanIIE
to communicate with the PC parallel port through the

October 20, 2003 (Version 1.0) 1

XSB-300E Parallel Port Interface

CPLD. The chip-select and write-strobe of the
SpartanIIE are used to receive a clock and reset
signal from the PC to the FPGA (lines 60 and 61,
respectively). These signals control state machines
that are loaded into the SpartanIIE.

The FPGA outputs an address to ther CPLD to select
one of the clauses in the case statement on lines 62–
82. As can be seen on line 41, the address is
composed of the lower three bits of the peripheral
address bus and the value on the INIT# pin of the
FPGA (which becomes a general-purpose I/O pin
after the FPGA is configured.)

If the CPLD address output by the FPGA is 0000,
then the circuitry described by statements 63–67 is
activated. This circuitry creates a pathway through
the CPLD whereby the PC can send and receive the
I2C clock and data signals through the data and
status pins of the parallel port to the FPGA. In this
case, the FPGA must be configured to pass these
signals onto the SCL and SDA signals that go to the
I2C peripherals on the XSB-300E Board (i.e., the
programmable clock and the video decoder chips).
This parallel port CPLD FPGA pathway allows the
XSTOOLs software utilities to program the oscillator
frequency and the video decoder options.

If the CPLD address output by the FPGA is 0001,
then the circuitry described by statements 68–72 is
activated. This circuitry creates a pathway through
the CPLD whereby the PC can send and receive the
clock, data and chip-select signals through the data
and status pins of the parallel port to the FPGA. The
FPGA must be configured to pass these signals onto
the CCLK, CDTI, CDTO and CSN# pins of the stereo
codec on the XSB-300E Board. This
parallel port CPLD FPGA pathway lets the
XSTOOLs software utilities program the stereo codec
options.

If the CPLD address output by the FPGA is 0010,
then the circuitry described by statements 73–75 is
activated. This circuitry creates a pathway through
the CPLD whereby the PC can send and receive data
through the data and status pins of the parallel port to
the FPGA. The FPGA must be configured to
assemble complete address and data fields from
these signals (using a state machine driven by the
clock from line 60) which it can then use to access
various peripherals on the XSB-300E Board. This
pathway is used, for example, so the
GXSLOAD/XSLOAD software utilities can
upload/download the SRAM and SDRAM on the
board.

If the CPLD address output by the FPGA is 0011,
then the circuitry described by statements 76–78 is
activated. This circuitry lets the PC force a value on
the lower seven bits of the peripheral data bus using
the data pins of the parallel port. The FPGA can
operate upon this value and return a result through
the parallel port status pins using three bits of the
peripheral address bus. This pathway is used by the
GXSPORT/XSPORT software utilities to apply test
vectors to simple designs loaded into the FPGA and
receive results.

The CPLD does not open a pathway between the
parallel port and the rest of the XSB-300E Board
when the CPLD address is 01XX (line 79).
Addresses in this range can be used for new CPLD
modes of operation.

If the FPGA places a high level on its INIT# pin, then
the CPLD circuitry defined by lines 80–81 is
activated. Bit A19 of the peripheral address bus is
passed through the CPLD to a status pin of the
parallel port while the rest of the parallel port remains
isolated from the board. This circuitry is used solely
to pass a status signal that reports the health of the
XSB-300E Board back to the GXSTEST/XSTEST
software utility running on the PC.

Changing the Parallel Port Interface

The parallel port interface is stored in the nonvolatile
Flash of the XC9572XL CPLD on the XSB-300E
Board. Any design you load into the CPLD will
become active as soon as the XSB-300E Board
powers up. So it is possible to load a faulty interface
design into the CPLD that makes it impossible to
program the SpartanIIE even after you cycle the
power. The only solution is to explicitly reprogram
the CPLD with a functional interface using
GXSLOAD. Then the XSB-300E Board will function
correctly again.

All you need to do when changing the parallel port
interface is to add a new clause to the case
statement on lines 62–83. Just select one of the
unused CPLD addresses and add the VHDL code for
your additional circuitry there.

When generating a new interface for the CPLD, you
must set the USERCODE signature register to the
four-character string <4>!. The XSTOOLs utilities
look for this signature in the CPLD to verify that a
valid interface is present.

October 20, 2003 (Version 1.0) 2

XSB-300E Parallel Port Interface

Listing 1: VHDL code for the default CPLD parallel port interface.
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

library ieee;
use ieee.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity dwnldpar is
 port(
 -- parallel port data and status pins
 pp_d: in std_logic_vector(7 downto 0);
 pp_s: out std_logic_vector(5 downto 3);

 -- FPGA configuration pins
 fpga_m: out std_logic_vector(0 downto 0); -- config. mode select (out)
 fpga_program_n: out std_logic; -- active-low config. initiate (out)
 fpga_cclk: out std_logic; -- config. clock (out)
 fpga_cs_n: out std_logic; -- active-low chip-select (out)
 fpga_write_n: out std_logic; -- active-low write-enable (out)
 fpga_init_n: inout std_logic; -- config. initialization (in)
 fpga_done: in std_logic; -- config. done (in)
 fpga_tck: out std_logic; -- JTAG clock (out)

 -- peripheral bus
 pb_d: inout std_logic_vector(7 downto 0); -- config. data (out)
 pb_a: inout std_logic_vector(19 downto 0) -- address bus (in)

);
end entity dwnldpar;

architecture arch of dwnldpar is
 constant LO: std_logic := '0';
 constant HI: std_logic := '1';
 constant HIZ: std_logic := 'Z';
 constant SLAVE_PARALLEL_MODE: std_logic_vector(0 downto 0) := "0";
 signal cclk: std_logic;
 signal config_data, nybble: std_logic_vector(3 downto 0);
 signal cpld_addr: std_logic_vector(3 downto 0);

 begin

 nybble <= pp_d(5 downto 2); -- data from PC to board
 cpld_addr <= fpga_init_n & pb_a(2 downto 0); -- selects CPLD profile

 process(pp_d,pb_a,nybble,config_data,cclk,fpga_done,cpld_addr)
 begin
 fpga_cs_n <= HIZ;
 fpga_write_n <= HIZ;
 pb_a <= (others=>HIZ);
 pb_d <= (others=>HIZ);
 fpga_tck <= LO; -- deactivate FPGA JTAG circuit
 fpga_m <= SLAVE_PARALLEL_MODE;-- set FPGA config mode
 fpga_program_n <= pp_d(7); -- FPGA PROGRAM# comes from parallel port
 cclk <= not pp_d(0); -- internal configuration clock
 fpga_cclk <= not cclk; -- FPGA configuration clock

 if fpga_done=LO then-- FPGA is not configured
 fpga_cs_n <= LO; -- enable writing of config. data
 fpga_write_n <= LO;
 pb_d <= config_data & nybble; -- two nybbles of config data
 else -- FPGA is configured
 fpga_cs_n <= not pp_d(1); -- clock for data interchange
 fpga_write_n <= pp_d(6); -- reset for data interchange FSM
 case conv_integer(unsigned(cpld_addr)) is

October 20, 2003 (Version 1.0) 3

XSB-300E Parallel Port Interface

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

 when 0 => -- I2C programming is selected by the FPGA
 pb_d(0) <= not pp_d(1); -- I2C clock to SAA7114 & osc chips
 pb_d(1) <= pp_d(6); -- I2C data to SAA7114 & osc chips
 pp_s(3) <= pb_a(3); -- I2C clock from SAA7114 & osc chips
 pp_s(4) <= pb_a(4); -- I2C data from SAA7114 & osc chips
 when 1 => -- stereo codec programming is selected by the FPGA
 pb_d(0) <= not pp_d(1); -- config. clock to codec chip
 pb_d(1) <= pp_d(6); -- config. data to codec chip
 pb_d(3) <= pp_d(5); -- chip-select to codec chip
 pp_s(4) <= pb_d(2); -- config. data from codec chip
 when 2 => -- data interchange interface
 pb_d(5 downto 2) <= pp_d(5 downto 2); -- data nybble from PC to FPGA
 pp_s(5 downto 3) <= pb_a(5 downto 3); -- data bits from FPGA to PC
 when 3 => -- GXSPORT/XSPORT interface
 pb_d(6 downto 0) <= pp_d(6 downto 0);
 pp_s(5 downto 3) <= pb_a(5 downto 3);
 when 4 | 5 | 6 | 7 => -- currently undefine CPLD modes
 when others => -- CPLD is not selected by the FPGA
 pp_s(5) <= pb_a(19); -- for reporting GXSTEST status
 end case;
 end if;

 end process;

 -- gather 4-bit data from parallel port
 process(cclk)
 begin
 if rising_edge(cclk) then
 config_data <= nybble;
 end if;
 end process;

end architecture arch; 95

October 20, 2003 (Version 1.0) 4

XSB-300E Parallel Port Interface

Listing 2: User-constraint file for CPLD pin assignments.
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

pin assignments for the XC9572XL CPLD chip on the XSB Board

peripheral bus
net pb_d<0> loc=p2; # data bit D0 (in/out)
net pb_d<1> loc=p4; # data bit D1 (in/out)
net pb_d<2> loc=p5; # data bit D2 (in/out)
net pb_d<3> loc=p6; # data bit D3 (in/out)
net pb_d<4> loc=p7; # data bit D4 (in/out)
net pb_d<5> loc=p8; # data bit D5 (in/out)
net pb_d<6> loc=p9; # data bit D6 (in/out)
net pb_d<7> loc=p10; # data bit D7 (in/out)
net pb_a<0> loc=p1; # address bit A0 (in/out)
net pb_a<1> loc=p64; # address bit A1 (in/out)
net pb_a<2> loc=p63; # address bit A2 (in/out)
net pb_a<3> loc=p62; # address bit A3 (in/out)
net pb_a<4> loc=p61; # address bit A4 (in/out)
net pb_a<5> loc=p60; # address bit A5 (in/out)
#net pb_a<6> loc=p59; # address bit A6 (in/out)
#net pb_a<7> loc=p58; # address bit A7 (in/out)
#net pb_a<8> loc=p45; # address bit A8 (in/out)
#net pb_a<9> loc=p44; # address bit A9 (in/out)
#net pb_a<10> loc=p57; # address bit A10 (in/out)
#net pb_a<11> loc=p43; # address bit A11 (in/out)
#net pb_a<12> loc=p56; # address bit A12 (in/out)
#net pb_a<13> loc=p46; # address bit A13 (in/out)
#net pb_a<14> loc=p47; # address bit A14 (in/out)
#net pb_a<15> loc=p52; # address bit A15 (in/out)
#net pb_a<16> loc=p51; # address bit A16 (in/out)
#net pb_a<17> loc=p48; # address bit A17 (in/out)
#net pb_a<18> loc=p42; # address bit A18 (in/out)
net pb_a<19> loc=p50; # address bit A19 (in/out)
#net pb_oe_n loc=p12; # active-low output enable (out)
#net pb_we_n loc=p49; # active-low write enable (out)

parallel port
net pp_d<0> loc=p33; # data pin D0 (in)
net pp_d<1> loc=p32; # data pin D1 (in)
net pp_d<2> loc=p31; # data pin D2 (in)
net pp_d<3> loc=p27; # data pin D3 (in)
net pp_d<4> loc=p25; # data pin D4 (in)
net pp_d<5> loc=p24; # data pin D5 (in)
net pp_d<6> loc=p23; # data pin D6 (in)
net pp_d<7> loc=p22; # data pin D7 (in)
net pp_s<3> loc=p34; # status pin S3 (out)
net pp_s<4> loc=p20; # status pin S4 (out)
net pp_s<5> loc=p35; # status pin S5 (out)

FPGA configuration interface
net fpga_m<0> loc=p36; # config. mode select (out)
net fpga_program_n loc=p39; # active-low config. initiate (out)
net fpga_cclk loc=p16; # config. clock (out)
net fpga_cs_n loc=p15; # active-low chip-select (out)
net fpga_write_n loc=p19; # active-low write-enable (out)
#net fpga_bsy loc=p18; # config. busy (in)
net fpga_init_n loc=p38; # config. initialization (in)
net fpga_done loc=p40; # config. done (in)
net fpga_tck loc=p13; # JTAG clock (out)

#net flash_ce_n loc=p11; # Flash RAM chip-enable (out)

#net cpld_clk loc=p17; # CPLD clock (in) 62

October 20, 2003 (Version 1.0) 5

	XSB-300E Parallel Port Interface
	The Default Parallel Port Interface
	Changing the Parallel Port Interface
	Listing 1: VHDL code for the default CPLD parallel port interface.
	Listing 2: User-constraint file for CPLD pin assignments.

