© Bert Cuzeau / fnailto:alse@compuserve.com

Walking Bit & Random Numbers on the XS40 Board
(Interfacing the FPGA and the Microcontroller)

Introduction

| have written this very simple example after having spent some time figuring out how to use
the 8031-FPGA combination. (I did not have the Foundation software so | could not open any
of the examples coming with the board).

| also experienced Xilinx Mapper problems while trying to implement the asynchronous
solutions suggested in several examples.

This project does only require a(ny) VHDL synthesizer, and the Xilinx Alliance Base product.

For the board architecture please refer to the superb XESS documentation.

The Software

To test the bus interface and the design flow, | re-used the ideas from two example designs
that can be found on the XESS CD-Rom (and Web) -but only as Foundation projects-...

This example, too, runs a small 8031 code which interacts with the FPGA :

(a) Itwalks a “one” in the A register 32 times, at a few Hertz pace, and writes register “A” to
a memory-mapped register located in the FPGA at address FO0O hex.
This register directly drives the 7-segment LED display located on the board.

(b) It then writes a seed (01) in another register, mapped at EO00 hex.
This register is an LFSR which generates a pseudo-ransom sequence each time it is
shifted. This shift occurs whenever a write (does not care what value) is done at DO0O.

(c) it writes dummy data at address D000 hex, at a few hertz pace, to shift the register,
(d) It reads the new LFSR value at EO0O hex, and writes it to the LED register.
(e) When the sequence (c).. (d) has been done 32 times, it loops backs to (a).

Though not very sphisticated, this program does test the FPGA interaction in many ways.

This program, in assembly language, is listed next page.

mailto:alse@compuserve.com

WALK.asm

Bertrand Cuzeau
alse@compuserve.com

This works as follows:

- a bit is walked four times on the LED display

- a seed is then written in the LFSR

- the LFSR is shifted 32 times, read back,

and written to the LED

- the system cycles back to the beginning of the test
This is probably not a very elegant code, but I am

not familiar with the 8031...

pon't forget to Pulse DO in the parallel port (reset) !
$moD51

STACKTOP EQU 70H ; start of stack (grows up)

LEDREG EQU OF000H ; LED register address
LFSR EQU 0EOOOH ; LFSR R/W register address
LFshift EQu ODOOOH ; LFSR shift command
DSEG
ORG 30H
CNTR: DS 1 ; counter for wait routine
CNT2: DS 1 ; counter for bit walk test
CSEG
ORG 0000H ; program starts at 0 after reset
START:
MoV SP,#STACKTOP ; initialize stack pointer ...
; --- walking bit LED Test ---
START2:
MOV A,#1 s A0 <=1
MOV DPTR,#LEDREG ; point on FPGA LED register
MOV CNT2,#32 ; 4 passes
LOOP:
RL A
MOVX @DPTR, A ; show A the LED digit
CALL WAIT ; delay so we can see the bits ...
DINZ CNT2, LOOP
5 -——- LFSR Test ---
MOV A,#1 ; Seed
MoV DPTR, #LFSR ; point on E000=FPGA LFSR register
MOV CNT2,#32 ; 32 passes
MOVX @DPTR, A ; Store Seed
LOOP1:
MOV DPTR, #LFSR ; point on EQOO0O=FPGA LFSR register
MOVX A,@PTR ; Read LFSR
MoV DPTR,#LEDREG ; point on FPGA LED register
MOVX @DPTR, A ; Write to the LED digit
CALL WAIT ; delay so we can see the bits ...
MoV DPTR, #LFShift
MOVX @PTR, A ; Dummy write to shift
DINZ CNT2,LO00P1
MP START2
WAIT: ; This subroutine waits about 1/8th second
PUSH ACC
PUSH B
MOV CNTR, #2 ; 1 =~ 1/8th sec
WAITL:
MOV B, #255
WAIT2:
MOV A,#255

DINZ ACC,$
DINZ B,WAIT2
DINZ CNTR,WAIT1

POP B
POP ACC
RET

END

The FPGA

The solution adopted is fully synchronous. It is also entirely VHDL-Based, though we have
reproduced below the equivalent schematics for the Top-Level :

I
CLK »L > XTALT>
CLK
[Fc DIB:0p——PC_D[5:0] PC_DIo] |1e RST
,19
Y4
4 nOE > L
DOE
Dout[7:0 >+ 7] <{ADIT:0D
Din[7:01— <F o0y
D Q AL[7:0D
CLK——
| ALE E . |
RST. DL1[7:0]
[BHA5:8D>—————AH[15:8]
R
En A) AH(15————— >p—ncE>
"E" AH[14]
AHM3] i - LFSREG
AH[12] ool 0F—{DI7:0] QI7:0]f———Dou(7:0 XESS Demo Board : FPGA+8031 Example
- LD
LFShift X .
WR EN The equivalent VHDL file is VTOP.vhd
"D" AH[15] CLK—{CLK

i AH[14] 22 RST——(RST Note : most of the 10 buffers are not represented -

AH[12} 126

Note the swap ! >3 114
LEDREG
AH[15] WR Din[7:0F——D[7:0] Q[7:0]———RLEDI[7:0] RLEDI6:0] LDBUF[&O]
F" AH[14] 5 ENLED EN
AH[13} 121 CLK LK
AH[12} A S ALSE Tile: TOP2
5 alse@compuserve.com Name: VTOP Example Design
Bertrand Cuzeau Date: 0104000 | Sheet 1 of 1
T

Caveat : this design has not been checked against timing specifications from the 8031 chip.
It works on my board, but this does not prove that the assumptions it is based on are correct,
nor they would remain correct with another brand of microcontroller...

The module “LEDREG” is just simple G_DEC FlipFlops... We made a module of it just for the
case where some decoding would have to be included.

The module LFSREG is a Linear Feedback shift register.

As we can see, the data is read back only from address E0O00 hex (LFSREG output).
Otherwise, multiplexers (or tbufs) could have been used for that purpose.

This schematic is provided under its VHDL form, so no graphical tool is necessary.
The description is 100% portable among all (decent) synthesis tools available on the market.

Project Files

The archive includes the following files :

File Name Description

G_BIDIR.vhd optional : Bi-directional buffer
G_DEC.vhd optional : D flipFlip with Enable & Clear
LFSREG.vhd Random Number Generator

LEDREG. vhd Led register

VTOP. vhd Top-Level description

XL40.ucf Pin Lock constraint file

XC4010XL.bit Ready-to-use download file for XC4010XL
WALK.asm Assembler program file

WALK. hex Binary program file

WALKBIT.doc This documentation (Word-Format)
README . txt Quick text-based description

Note : The two first vhdl modules (Bidir and D-FlipFlop) are not necessary. They can be used to
demonstrate the use of "Generate" VHDL statements (which come commented out).

It would have been trivial (in fact easier) to include everything in a single file (top-level), but it is
not the way to handle more complex projects...

This project can easily serve as a platform for more ambitious designs (enhancing the decoder
process, adding other submodules, etc....). But PLEASE : before doing this, you should check
carefully the timing information of the 8031 chip and ensure that the synchronous solution
implemented here is absolutely correct.

Pinout

The pinout is indeed extremely important. Any error at this stage and the design won’t work at
all —if nothing worse happens-.

Notice the AH_16 pin added at the end, important if you have a 128k RAM.

Last : this pinout is okay for the XS40-010XL board that | own. Make sure it is appropriate for
your board ! XS95 boards have different pinout.

;ET CLK LOC=P13;
LED DRIVER OUTPUTS

NET LED(0) LOC=P25;
NET LED(1) LOC=P26;
NET LED(2) LOC=P24;
NET LED(3) LOC=P20;
NET LED(4) LOC=P23;
NET LED(5) LOC=P18;
;ET LED(6) LOC=P19;

DATA BITS FROM THE PC
NET PC_D(0) LOC=P44;
NET PC_D(1) LOC=P45;
NET PC_D(2) LOC=P46;
NET PC_D(3) LOC=P47;
NET PC_D(4) LOC=P48;
NET PC_D(5) LOC=P49;

#

#
#
#
#
#
#
#

CLOCK FROM EXTERNAL OSCILLATOR

N -howWmnN Qo

PARALLEL PORT

MUST USE SPECIAL-PURPOSE PINS FOR
ACCESSING PC_D(6) AND PC_D(7)

uC CLOCK

uC ACTIVE-HIGH RESET

uC ACTIVE-High ! ADDRESS LATCH ENABLE
uC ACTIVE-LOW PROGRAM-STORE ENABLE

uC ACTIVE-LOW READ

uC ACTIVE-LOW WRITE (ALSO CONTROLS RAM)

MULTIPLEXED ADDRESS/DATA BUS

DEMUXED Addr LOW

//NET PC_D(6) LOC=P32; #
4/NET PC_D(7) LOC=P34; #
MICROCONTROLLER PINS
NET XTAL1l LOC=P37; #
NET RST LOC=P36; #
NET ALE LOC=P29; #
NET nPSEN LOC=P14; #
NET nRD LOC=P27; #
xET nwWR LOC=P62; #
NET AD(0) LOC=P41; #
NET AD(1) LOC=P40;
NET AD(2) LOC=P39;
NET AD(3) LOC=P38;
NET AD(4) LOC=P35;
NET AD(5) LOC=P81;
NET AD(6) LOC=P80;
xET AD(7) LOC=P10;

EXt RAM Pins (FPGA outs) :
NET AL(C0) LOC=P3; #
NET AL(1) LOC=P4;
NET AL(2) LOC=P5;
NET AL(3) LOC=P78;
NET AL(4) LOC=P79;
NET AL(5) LOC=P82;
NET AL(6) LOC=P83;
gET AL(7) LOC=P84;

Addr High from uC to FPGA & Ram
NET AH(8) LOC=P59; #
NET AH(9) LOC=P57;
NET AH(10) LOC=P51;
NET AH(11) LOC=P56;
NET AH(12) LOC=P50;
NET AH(13) LOC=P58;
NET AH(14) LOC=P60;
gET AH(15) LOC=P28;

RAM CONTROL PINS

NET AH_16 LOC=P16; #

NET nOE LOC=P61;

#

Upper 64 k Enable
ACTIVE-LOW OUTPUT ENABLE

NET nCE LOC=P65; # ACTIVE-LOW CHIP ENABLE

Design Flow

It is based on any VHDL synthesizer associated to Alliance 2.1i.
If you follow the instructions below step-by-step, everything should be done in a few minutes.

The Asm file is also delivered in .hex format so we don’t have to asemble it.

Create a new directory and unpack the files listed above.

Launch your perferred VHDL Synthesis tool.

Create a new project in your new directory.

Add the sources files LFSREG.vhd, LEDREG.vhd and VTOP.vhd.

VTOP should be the top-level (the last in the list if you use Synplicity)

Select the proper target (device) for your board,

Synthesize the project. (select the VTOP if you use FPGA Express)

You should only have one normal warning (we have one unused bit in LEDreg).
The Edif file should be done (vtop.edf).

Quit your synthesis tool.

Launch Xilinx Design Manager

File-New Project-Browse.

Go to your directory and pick vtop.edf

Click on Ok (use the default work directory)

In the Constraints File box, select "Custom"
Browse back to your dir and select XL40.UCF
Click on Ok.

Click on OK.

Now we're back to the main screen.

Click on the black arrow (Design-Implement). You should soon end up with a properly
implemented chip, with a bit file ready to use !

Quit Design Manager.
Open an MS-DOS window.
Type : xsload walk.hex vtop.bit

Run the GXSPORT utility to toggle the DO bit to 1 then back to 0, in order to reset
properly the 8031.

You should see the walking bit followed by 32 pseudo-random patterns on the LED display.

PS: If your board doesn't seem to work, try first the GXSTEST. If it doesn’t pass, you could then
try to reprogram the clock generator as indicated in the documentation.

I hope this example will be useful for those who are focused on VHDL methodologies.

Bert Cuzeau
ASIC & FPGA Design Expert
Doulos HDL Course Leader
alse@compuserve.com

	Walking Bit & Random Numbers on the XS40 Board�(Interfacing the FPGA and the Microcontroller)
	Introduction
	The Software
	The FPGA
	Project Files
	
	G_BIDIR.vhd

	Pinout
	Design Flow

