
Practical Implementation of Rijndael S-Box Using Combinational Logic

Edwin NC Mui
Custom R & D Engineer

Texco Enterprise Ptd. Ltd.

{blackgrail2000@hotmail.com}

Abstract

This paper presents a combinational logic based Rijndael S-Box implementation for
the SubByte transformation in the Advanced Encryption Standard (AES) algorithm
for Field Programmable Gate Arrays (FPGAs). Recent publications on AES
implementation have shown that the combinational logic based S-Box is proven for
its small area occupancy and high throughput, given the fact that pipelining can be
applied to this S-Box implementation as compared to the typical ROM based lookup
table implementation which access time is fixed and unbreakable. In this paper, the
construction procedure for implementing a 2 stage pipeline combinational logic
based S-Box is presented and illustrated in a step-by-step manner. The results from
the Place and Route report indicate that area occupied by this architecture is 43 slices
with a maximum clock frequency of 72.155 MHz. Finally, for the purpose of
practicality, the depth of the mathematics involved has been reduced in order to allow
the reader to better understand the internal operations within the S-Box. A worked
example by hand is also provided to help the reader better understand the
functionality of the internal operations.

1. Introduction

The paper begins with a brief introduction to the Advanced Encryption Standard, the
SubByte and InvSubByte transformation, and finally a short discussion on the previous
hardware implementations of the SubByte/InvSubByte transformation.

1.1. The Advanced Encryption Standard

On 2nd January 1997, the National Institute of Standards and Technology (NIST)
invited proposals for new algorithms for the new Advanced Encryption Standard (AES). [1]
The goal was to replace the older Data Encryption Standard (DES) which was introduced in
November 1976 when DES was no longer secure. After going through 2 rounds of evaluation,
Rijndael was selected and named the Advanced Encryption Standard algorithm on 26th

November 2001. [6]

The AES algorithm has a fixed block size of 128 bits and a key length of 128, 192 or
256 bits. It generates its key from an input key using the Key Expansion function. The AES
operates on a 4x4 array of bytes which is called a state. The state undergoes 4
transformations which are namely the AddRoundKey, SubByte, ShiftRow and MixColumn
transformation. [4] The AddRoundKey transformation involves a bitwise XOR operation
between the state array and the resulting Round Key that is output from the Key Expansion
function. SubByte transformation is a highly non-linear byte substitution where each byte in

the state array is replaced with another from a lookup table called an S-Box. ShiftRow
transformation is done by cyclically shifting the rows in the array with different offsets.
Finally, MixColumn transformation is a column mixing operation, where the bytes in the
new column are a function of the 4 bytes of a column in the state array. [6] Of all the
transformation above, the SubByte transformation is the most computationally heavy. [3]

1.2. The SubByte and InvSubByte Transformation

The SubByte transformation is computed by taking the multiplicative inverse in
GF(28) followed by an affine transformation. For its reverse, the InvSubByte transformation,
the inverse affine transformation is applied first prior to computing the multiplicative inverse.
[1] The steps involved for both transformation is shown below.

SubByte:  Multiplicative Inversion in GF(28)  Affine Transformation
InvSubByte:  Inverse Affine Transformation  Multiplicative Inversion in GF(28)

The Affine Transformation and its inverse can be represented in matrix form and it is shown
below.

 







































































































1

1

0

0

0

1

1

0

10001111

11000111

11100011

11110001

11111000

01111100

00111110

00011111

0

1

2

3

4

5

6

7

a

a

a

a

a

a

a

a

aAT (1.1)

 







































































































1

0

1

0

0

0

0

0

00100101

10010010

01001001

10100100

01010010

00101001

10010100

01001010

0

1

2

3

4

5

6

7

1

a

a

a

a

a

a

a

a

aAT (1.2)

The AT and AT-1 are the Affine Transformation and its inverse while the vector a is
the multiplicative inverse of the input byte from the state array. From here, it is observed that
both the SubByte and the InvSubByte transformation involve a multiplicative inversion
operation. Thus, both transformations may actually share the same multiplicative inversion
module in a combined architecture. An example of such hardware architecture is shown
below. Switching between SubByte and InvSubByte is just a matter of changing the value of
INV. INV is set to 0 for SubByte while 1 is set when InvSubByte operation is desired.

Figure 1.1. Combined SubByte and InvSubByte sharing a common multiplicative inversion module.

1.2. Previous Implementations of the S-Box

One of the most common and straight forward implementation of the S-Box for the
SubByte operation which was done in previous work was to have the pre-computed values
stored in a ROM based lookup table. In this implementation, all 256 values are stored in a
ROM and the input byte would be wired to the ROM’s address bus. However, this method
suffers from an unbreakable delay since ROMs have a fixed access time for its read and write
operation. [3] Furthermore, such implementation is expensive in terms of hardware.

A more refined way of implementing the S-Box is to use combinational logic. Such
examples of work that implements the S-Box using this method were [1], [3] and [5]. This S-
Box has the advantage of having small area occupancy, in addition to be capable of being
pipelined for increased performance in clock frequency. The S-Box architecture discussed in
this paper is based on the combinational logic implementation.

2. S-Box Construction Methodology

This section illustrates the steps involved in constructing the multiplicative inverse
module for the S-Box using composite field arithmetic. Since both the SubByte and
InvSubByte transformation are similar other than their operations which involve the Affine
Transformation and its inverse, therefore only the implementation of the SubByte operation
will be discussed in this paper. The multiplicative inverse computation will first be covered
and the affine transformation will then follow to complete the methodology involved for
constructing the S-Box for the SubByte operation. For the InvSubByte operation, the reader
can reuse multiplicative inversion module and combine it with the Inverse Affine
Transformation, as shown above in Figure 1.1.

The individual bits in a byte representing a GF(28) element can be viewed as
coefficients to each power term in the GF(28) polynomial. For instance, {10001011}2 is
representing the polynomial q7 + q3 + q + 1 in GF(28). From [2], it is stated that any arbitrary
polynomial can be represented as bx + c, given an irreducible polynomial of x2 + Ax + B.
Thus, element in GF(28) may be represented as bx + c where b is the most significant nibble
while c is the least significant nibble. From here, the multiplicative inverse can be computed
using the equation below. [2]

       1221221   cbcABbbAcxcbcABbbcbx (2.1)

From [1], the irreducible polynomial that was selected was x2 + x + λ. Since A = 1 and B = λ,
then the equation could be simplified to the form as shown below. [1]

          12121   cbcbbcxcbcbbcbx  (2.2)

The above equation indicates that there are multiply, addition, squaring and multiplication
inversion in GF(24) operations in Galois Field. Each of these operators can be transformed
into individual blocks when constructing the circuit for computing the multiplicative inverse.
From this simplified equation, the multiplicative inverse circuit GF(28) can be produced as
shown in Figure 2.1.

Figure 2.1. Multiplicative inversion module for the S-Box. [1]

The legends for the blocks within the multiplicative inversion module from above are
illustrated in the Figure 2.2 below.

Figure 2.2. Legends for the building blocks within the multiplicative inversion module.

2.1. Isomorphic Mapping and Inverse Isomorphic Mapping

The multiplicative inverse computation will be done by decomposing the more
complex GF(28) to lower order fields of GF(21), GF(22) and GF((22)2). In order to accomplish
the above, the following irreducible polynomials are used. [1]

GF(22)  GF(2) : x2 + x + 1
GF((22)2)  GF(22) : x2 + x + φ (2.3)
GF(((22)2)2)  GF((22)2) : x2 + x + λ

where φ = {10}2 and λ = {1100}2.





































































0

1

2

3

4

5

6

7

11000010

01001010

01111001

01100011

01110101

00110101

01111011

00000101

q

q

q

q

q

q

q

q

q





































































0

1

2

3

4

5

6

7

1

10101110

00001100

01111001

01111100

01101110

01000110

00100010

01000111

q

q

q

q

q

q

q

q

q















































016

146

12347

1267

12357

2357

123467

57

qqq

qqq

qqqqq

qqqq

qqqqq

qqqq

qqqqqq

qq

q

Computation of the multiplicative inverse in composite fields cannot be directly
applied to an element which is based on GF(28). That element has to be mapped to its
composite field representation via an isomorphic function, δ. Likewise, after performing the
multiplicative inversion, the result will also have to be mapped back from its composite field
representation to its equivalent in GF(28) via the inverse isomorphic function, δ-1. Both δ and
δ-1 can be represented as an 8x8 matrix. Let q be the element in GF(28), then the isomorphic
mappings and its inverse can be written as δ*q and δ-1*q, which is a case of matrix
multiplication as shown below, where q7 is the most significant bit and q0 is the least
significant bit. [1]

The matrix multiplication can be translated to logical XOR operation. The logical
form of the matrices above is shown below.

2.2. Composite Field Arithmetic Operations

Again from [2] and [5], any arbitrary polynomial can be represented by bx + c where
b is upper half term and c is the lower half term. Therefore, from here, a binary number in
Galois Field q can be spilt to qHx + qL. For instance, if q = {1011}2, it can be represented as
{10}2x + {11}2, where qH is {10}2 and qL = {11}2. qH and qL can be further decomposed to
{1}2x + {0}2 and {1}2x + {1}2 respectively. The decomposing is done by making use of the
irreducible polynomials introduced at (2.3). Using this idea, the logical equations for the
addition, squaring, multiplication and inversion can be derived.















































02456

45

12347

12345

12456

156

26

1567

1

qqqqq

qq

qqqqq

qqqqq

qqqqq

qqq

qq

qqqq

q

2.2.1. Addition in GF(24)

Addition of 2 elements in Galois Field can be translated to simple bitwise XOR
operation between the 2 elements.

2.2.2. Squaring in GF(24)

Let k = q2, where k and q is an element in GF(24), represented by the binary number
of {k3k2 k1 k0}2 and {q3 q2 q1 q0}2 respectively.

The x2 term can be modulo reduced using the irreducible polynomial from (2.3), x2 +
x + φ. By setting x2 = x + φ and replacing it into x2. Doing so yields the new expressions
below.

 


 )2(2222

22

GFqqxqk

qxqk

LH k

LH

k

H

LH










The expression above is now decomposed to GF(22). Decomposing kH and kL further
to GF(2) would yield the formula to compute squaring operation in GF(24).

   
2

2
3

2
22323

22
3

2
23

2
23

2

qxqqxqqxqqxqk

qxqqqqk

H

HH





Using the irreducible polynomial from (2.3) x2 + x + 1, and setting it to x2 = x + 1, x2

is substituted and the new expression is obtained.

 
 )2(

1

32323

23

GFqqxqkxk

qxqkH




(2.4)

The kL term is also decomposed in the similar manner as shown below. The φ term is
rewritten in its polynomial representation in the idea mentioned in Section 2.2.

 
 

222222

2

2

01230123

LHLLHLHH

LH

qq

LH

kk

qxqqxqqxqqxqk

qxqqqqqkxkkkkkk
LHLH
































   
     
    

0
2

12
3

3

2
01010

22
1

2
23232

22
3

2
012

2
23

2
012

2
23

22

0}1{

}10{

qxqxqxqk

qxqqxqqxqxqxqqxqqxqk

qxqxqxqk

qqqqbqk

L

L

L

LHL







 

As was done earlier, the x2 term can be substituted since x2 = x + 1. For the case of x3,
it can be obtained by multiplying x2 by x. That is, x3 = x(x) + x = x2 + x. Substituting for x2,
x3 = x + 1 + x. The two x terms cancel out each other, leaving only x3 = 1. Performing this
substitution to the above expression yields the following.

   
   )2(

11

0131201

0123

GFqqqxqqkxk

qxqxqqkL




(2.5)

From equations (2.4) and (2.5), the formula for computing the squaring operation in
GF(24) is acquired as shown below.

0130

121

232

33

qqqk

qqk

qqk

qk







(2.6)

Equation (2.6) can then be mapped to its hardware logic diagram and it is shown in
Figure 2.3 below.

Figure 2.3. Hardware diagram for Squarer in GF(24). [3]

2.2.3. Multiplication with constant, λ

Let k = qλ, where k = {k3 k2 k1 k0}2, q = {q3 q2 q1 q0}2 and λ = {1100}2 are elements of
GF(24).

λL can be cancelled out since λL = {00}2.

xqxqk HLHH   2

Modulo reduction can be performed by substituting x2 = x + φ using the irreducible
polynomial in (2.3) to yield the expression below.

 
   )2(2GFqxqqk

xqxqk

LH k

HH

k

HLHH

HLHH





  




   




































LH
LHLH qq

LH

kk

qqqqkxkkkkkk


001101230123

  LHLH xqxqk  

As done previously in Section 2.2.2, the kH and kL terms can be further broken down
to GF(2).

     
     

    001
2

1223
2

3

0123

201223

11

1111

qxqqxqqxqqxqk

xqxqxqxqk

qqqqk

qqk

H

H

H

HLHHH






 

Substituting x2 = x + 1, would then yield the following.

(2.7)

The same procedure is taken to decompose kL to GF(2).

   
   

xqxqxqxqk

xxqxqk

qqk

qk

L

L

L

HHL

2
2

3
2

2
3

3

23

2223

1

1011





 

Again, the x2 term can be substituted since x2 = x + 1. Likewise, x3 is also substituted
with x3 = 1, the same method from Section 2.2.2.

(2.8)

From equations (2.7) and (2.8) combined, the formula for computing multiplication
with constant λ is shown below.

20

31

01232

023

qk

qk

qqqqk

qqk







(2.9)

Equivalently, the equation (2.9) can be mapped to its hardware diagram and it is
shown in Figure 2.4 below.

       
   

   )2(

11

01230223

0123011233

00112233

GFqqqqxqqkxk

qqqqxqqqqqqk

qxqqxqqxqqxqk

H

H






     
   

   )2(23

233223

111

01

2323

GFqxqkxk

qqqxqqqk

xqxqxqqk

L

L





Figure 2.4. Hardware diagram for multiplication with constant λ. [3]

2.2.4. GF(24) Multiplication

Let k = qw, where k = {k3 k2 k1 k0}2, q = {q3 q2 q1 q0}2 and w = {w3 w2 w1 w0}2 are
elements of GF(24).

  
  

    LLHLLHHH

LHLH

wwqq

LH

kk

wqxwqwqxwqk

wxwqxqwwwwqqqqkxkkkkkk
LHLHLH














































2

012301230123 

Substituting the x2 term with x2 = x + φ yields the following.

    
 )2(2GFwqwqxwqwqwqkxkk

wqxwqwqxwqk

LLHHHLLHHHLH

LLHLLHHH








(2.10)

Equation (2.10) is in the form GF(22). It can be observed that there exists addition and
multiplication operations in GF(22). As mentioned in Section 2.2.1, addition in GF(22) is but
bitwise XOR operation. Multiplication in GF(22), on the other hand, requires decomposition
to GF(2) to be implemented in hardware. Also, it the expression would be too complex if
equation (2.10) were to be broken down to GF(2). Thus, the formula for multiplication in
GF(22) and constant φ will be derived instead. Figure 2.5 below shows the hardware
implementation for multiplication in GF(24).

4
4

4

x φ

4

2

2

2

2

2

2

4

4

Multiplication operation in GF(22)

Figure 2.5. Hardware implementation of multiplication in GF(24). [3]

The pre-computed multiplication result of 2 elements in GF(24) is tabled below.

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 a b c d e f
2 0 2 3 1 8 a b 9 c e f d 4 6 7 5
3 0 3 1 2 c f d e 4 7 5 6 8 b 9 a
4 0 4 8 c 6 2 e a b f 3 7 d 9 5 1
5 0 5 a f 2 7 8 d 3 6 9 c 1 4 b e
6 0 6 b d e 8 5 3 7 1 c a 9 f 2 4
7 0 7 9 e a d 3 4 f 8 6 1 5 2 c b
8 0 8 c 4 b 3 7 f d 5 1 9 6 e a 2
9 0 9 e 7 f 6 1 8 5 c b 2 a 3 4 d
a 0 a f 5 3 9 c 6 1 b e 4 2 8 d 7
b 0 b d 6 7 c a 1 9 2 4 f e 5 3 8
c 0 c 4 8 d 1 9 5 6 a 2 e b 7 f 3
d 0 d 6 b 9 4 f 2 e 3 8 5 7 a 1 c
e 0 e 7 9 5 b 2 c a 4 d 3 f 1 8 6
f 0 f 5 a 1 e 4 b 2 d 7 8 3 c 6 9

Table 2.1. Pre-computed GF(24) multiplication results.

From Table 2.1, the results for multiplication with constant λ and squaring operation
in GF(24) can also be obtained.

2.2.5. GF(22) Multiplication

Let k = qw, where k = {k1 k0}2, q = {q1 q0}2 and w = {w1 w0}2 are elements of GF(22).

       
000110

2
11

010101010101

wqxwqxwqxwqk

wxwqxqwwqqkxkkkk





The x2 term can be substituted with x2 = x + 1 to yield the new expression below.

 
   )2(

1

001101101101

00011011

GFwqwqxwqwqwqkxk

wqxwqxwqxwqk




(2.11)

The equation above can now be implemented in hardware as multiplication in GF(2)
involves only the use of AND gates. The formula for computing multiplication in GF(2) is as
follows.

00110

0110111

wqwqk

wqwqwqk




(2.12)

Figure 2.6 below illustrates its hardware implementation.

2
2

2

2

2

2

Figure 2.6. Hardware implementation of multiplication in GF(2). [3]

The hardware implementation above differs from the (2.12) for the computation of k1.
It can be proven that the implementation above for computing k1, would result to the
expression in (2.12), as shown below.

    
         
     0110111

00000110111

0001011

wqwqwqk

wqwqwqwqwqk

wqwwqqk






2.2.6. Multiplication with constant φ

Let k = qφ, where k = {k1 k0}2, q = {q1 q0}2 and φ = {10}2 are elements of GF(22).

     
xqxqk

xqxqqqkxkk

0
2

1

0120101 10





Substitute the x2 term with x2 = x + 1, yield the expression below.

 
   )2(

1

101

01

GFqxqqk

xqxqk




(2.13)

From (2.13), the formula for computing multiplication with φ can be derived and is
shown below.

10

011

qk

qqk




(2.14)

The hardware implementation of multiplication with φ is shown below in Figure 2.7.

Figure 2.7. Hardware implementation of multiplication with constant φ. [3]

2.2.7. Multiplicative Inversion in GF(24)

The authors of [3] has derived a formula to compute the multiplicative inverse of q
(where q is an element of GF(24)) such that q-1 ={q3

-1,q2
-1,q1

-1,q0
-1}. The inverses of the

individual bits can be computed from the equation below. [3]

010121220301313023123
1

0

10220131233
1

1

12203023123
1

2

2031233
1

3

qqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqq

qqqqqqqqqqqq

qqqqqqqq

















(2.15)

The table containing the results of the multiplicative inverse in hexadecimal is shown
below.

q 0 1 2 3 4 5 6 7 8 9 a b c d e f
q-1 0 1 3 2 f c 9 b a 6 8 7 5 e d 4

Table 2.2. Pre-computed results of the multiplicative inverse operation in GF(24).

3. Worked Example

Figure 3.1 below illustrates a worked example using the multiplication table,
multiplicative inverse table in and block diagram shown in Figure 3.1.

Figure 3.1. A worked example for computing the SubByte operation.

The above example shows the propagation of the input data of 0x04 into a composite
field based S-Box. The input data will first undergo the multiplicative inversion. The values
at which the high and low nibbles are transformed to are indicated by the 4 bit numbers
outside of the logical blocks. The example can be worked by hand since the tables containing
the results for GF(24) multiplication and multiplicative inverses are provided. After the
inverse isomorphic mapping operation of the multiplicative inversion module, the Affine
Transformation is applied to the multiplicative inverse to yield the S-Box substituted value
for the given input of 0xCB. Doing so yields an output of 0xF2 which agrees with the S-Box
table provided in [4].

4. FPGA Implementation

The architecture in Figure 4.1 is implemented on a Xilinx Spartan-II XCS200-5
FPGA. From [3], the area occupied by the S-Box can be reduced by merging the inverse
isomorphic mapping with the Affine Transformation. Therefore, in the FPGA
implementation, the δ-1 and Affine Transformation module is combined to reduce the slices
occupied by the S-Box. To use the S-Box as one continuous path would be costly in terms of
the logic delay since deep logic will severely reduce the highest possible achievable clock
frequency. Thus, a 2-layer pipeline is used to break the logic delay in the attempt to achieve a
higher clock frequency. Figure 4.1 below shows the applied pipeline register in the hardware
implementation. The dotted line indicates a pipelined register.

Figure 4.1. Implemented hardware architecture on the FPGA with a 2-layer pipeline.

The S-Box was synthesized using Xilinx ISE 8.1i VHDL Compiler. The resulting
area occupied by the S-Box with maximum place-and-route efforts for the architecture above
is 43 slices out of the total of 2,352 slices. From the static timing report, the minimum period
for the clock signal which can be applied to the circuit is 13.859 ns. This translates to a
maximum clock frequency of 72.155 MHz, which is sufficient for most non-speed critical
applications.

Higher clock frequencies can be achieved by cutting up the S-Box further by placing
more intermediate pipeline registers within it, as was done in [3]. However, it should be
noted that increasing the number of pipeline registers will result in an increase in area
occupancy. Also, the latency would be higher for each additional pipeline register added.
This is due to the fact that for every pipeline register added, it would take an additional clock
cycle for the processed data to propagate from one register to another.

5. Field Testing

After running a simulation on the S-Box using the Xilinx ISE simulator, the
functionality of the S-Box will have to be confirmed that it would perform as shown in the
simulation in real life. Therefore, additional test circuitry will have to be added within the
FPGA, integrated to the S-Box in order to perform such test. Figure 5.1 below shows the test
circuit used for field testing.

Clk

Reset

CNT_Out

Clk

Reset

GF256_Ori

Sbox_Out

WE

EN

Reset

Clk

DI [7:0]

Addr [8:0]

DO [7:0]

50 MHz
+Vcc

1 0

+Vcc

RW_sel

8 90

1

RW_sel

330 Ω LEDs

10 kΩ

8x DIP Switch

+Vcc

8

8

8

8

8 Bit Count-up Counter

S-Box Entity

512x8 Single Port
BlockRAM

Figure 5.1. Test circuit for performing a field test to the S-Box.

The resulting area occupancy and minimum clock period acquired from Xilinx ISE
using maximum place and route effort levels is 54 slices and 10.774 ns, which translate to a
maximum clock frequency of 92.816 MHz. The clock frequency is higher in the test circuit
as compared to the S-Box circuit is due to the logics before the first pipeline register,
resulting to a longer setup time, as shown in Figure 2.1. In the test circuit, there is no pad to
setup time for the S-Box since the inputs to the S-Box are internally connected within the
FPGA.

The test circuit is implemented on a XESS XSA-200 board which houses the Spartan
II XCS200-5 FPGA. A clock divider is used to generate a 50 MHz clock from the 100 MHz
oscillator. This is done since 100 MHz would exceed the maximum clock frequency of the
test circuit. An 8 bit counter is used to generate the input to the S-Box. The output of the
counter is also connected to the address bus of the Block RAM. Every clock cycle, the
counter will feed new input to the S-Box and the output of the S-Box is then stored into the
address of the Block RAM pointed by the counter. For the first 254 clock cycles, the Block
RAM is being written to with the output of the S-Box. By the 255th cycle, the value of the
RW_sel which initial value is ‘0’, is switched to ‘1’ by the state machine. From then on, the
values written in the Block RAM can be read via the LEDs connected to the output data bus
of the Block RAM. The DIP switches are used as an input to the address bus of the Block
RAM. By adjusting the DIP switches, the results that were output by the S-Box can be
verified. The address pins of the Block RAM are being pulled low by pull down resistors.
Thus, setting the DIP switch would result in a logic ‘1’ input.

The test circuit has a latency of 2 clock cycles, since there are 2 layers of pipeline
registers at the S-Box. Thus, the first valid data would appear in the 3rd clock cycle, which is
address 0x02 of the Block RAM. Table 5.1 below shows the partial listing of the data
contained in the specified memory location.

Address Data
0x00 0x00 (Junk data)
0x01 0x63 (Junk data)
0x02 0x63
0x03 0x7c
0x04 0x77
0x05 0x7b
0x06 0xf2
0x07 0x6b
0x08 0x6f

. .

. .
0xc0 0xae
0xc1 0x08
0xc2 0xba
0xc3 0x78

Table 5.1. Partial listing of the data contained in the Block RAM.

Figure 5.2 below shows the test circuit running a test to verify the output of the S-Box.
The DIP switch is set to 0x06 and the LED is displaying the data in address 0x06 which is
0xF2.

Figure 5.2. Verifying the functionality of the S-Box on a test circuit.

6. Conclusion

A combinational logic based S-Box for the SubByte transformation is discussed and
its internal operations are explained. As compared to the typical ROM based lookup table,
the presented implementation is both capable of higher speeds since it can be pipelined and
small in terms of area occupancy (43 slices for a 2 stage pipeline on a Spartan II XCS200-5
FPGA). This compact and high speed architecture allows the S-Box to be used in both area-
limited and demanding throughput AES chips for various applications, ranging from small
smart cards to high speed servers.

References

[1] Akashi Satoh, Sumio Morioka, Kohji Takano and Seiji Munetoh, “A Compact
Rijndael Hardware Architecture with S-Box Optimization.”, Springer-Verlag Berlin
Heidelberg, 2001.

[2] Vincent Rijmen, “Efficient Implementation of the Rijndael S-Box.”, Katholieke
Universiteit Leuven, Dept. ESAT. Belgium.

[3] Xinmiao Zhang and Keshab K. Parhi, “High-Speed VLSI Architectures for the AES
Algorithm.”, IEEE Transactions on Very Large Scale Integration(VLSI) Systems, Vol.
12, No. 9, Septemper 2004.

[4] “Advanced Encryption Standard (AES)” Federal Information Processing Standards
Publication 197, 26th November 2001.

[5] Tim Good and Mohammed Benaissa, “Very Small FPGA Application-Specific
Instruction Processor for AES.”, IEEE Transactions on Circuits and Systems – I:
Regular Papers, Vol. 53, No. 7, July 2006.

[6] The Advanced Encryption Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

