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Abstract

This paper presents a combinational logic based Rijndael S-Box implementation for 
the SubByte transformation in the Advanced Encryption Standard (AES) algorithm 
for Field Programmable Gate Arrays (FPGAs). Recent publications on AES 
implementation have shown that the combinational logic based S-Box is proven for 
its small area occupancy and high throughput, given the fact that pipelining can be 
applied to this S-Box implementation as compared to the typical ROM based lookup 
table implementation which access time is fixed and unbreakable. In this paper, the 
construction procedure for implementing a 2 stage pipeline combinational logic 
based S-Box is presented and illustrated in a step-by-step manner. The results from 
the Place and Route report indicate that area occupied by this architecture is 43 slices 
with a maximum clock frequency of 72.155 MHz. Finally, for the purpose of 
practicality, the depth of the mathematics involved has been reduced in order to allow 
the reader to better understand the internal operations within the S-Box. A worked 
example by hand is also provided to help the reader better understand the 
functionality of the internal operations.

1. Introduction

The paper begins with a brief introduction to the Advanced Encryption Standard, the 
SubByte and InvSubByte transformation, and finally a short discussion on the previous 
hardware implementations of the SubByte/InvSubByte transformation.

1.1. The Advanced Encryption Standard

On 2nd January 1997, the National Institute of Standards and Technology (NIST) 
invited proposals for new algorithms for the new Advanced Encryption Standard (AES). [1]
The goal was to replace the older Data Encryption Standard (DES) which was introduced in 
November 1976 when DES was no longer secure. After going through 2 rounds of evaluation, 
Rijndael was selected and named the Advanced Encryption Standard algorithm on 26th

November 2001. [6]

The AES algorithm has a fixed block size of 128 bits and a key length of 128, 192 or 
256 bits. It generates its key from an input key using the Key Expansion function. The AES 
operates on a 4x4 array of bytes which is called a state. The state undergoes 4 
transformations which are namely the AddRoundKey, SubByte, ShiftRow and MixColumn 
transformation. [4] The AddRoundKey transformation involves a bitwise XOR operation 
between the state array and the resulting Round Key that is output from the Key Expansion 
function. SubByte transformation is a highly non-linear byte substitution where each byte in 



the state array is replaced with another from a lookup table called an S-Box. ShiftRow 
transformation is done by cyclically shifting the rows in the array with different offsets. 
Finally, MixColumn transformation is a column mixing operation, where the bytes in the 
new column are a function of the 4 bytes of a column in the state array. [6] Of all the 
transformation above, the SubByte transformation is the most computationally heavy. [3]

1.2. The SubByte and InvSubByte Transformation

The SubByte transformation is computed by taking the multiplicative inverse in 
GF(28) followed by an affine transformation. For its reverse, the InvSubByte transformation, 
the inverse affine transformation is applied first prior to computing the multiplicative inverse. 
[1] The steps involved for both transformation is shown below.

SubByte:  Multiplicative Inversion in GF(28)  Affine Transformation
InvSubByte:  Inverse Affine Transformation  Multiplicative Inversion in GF(28)

The Affine Transformation and its inverse can be represented in matrix form and it is shown 
below.
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The AT and AT-1 are the Affine Transformation and its inverse while the vector a is 
the multiplicative inverse of the input byte from the state array. From here, it is observed that 
both the SubByte and the InvSubByte transformation involve a multiplicative inversion 
operation. Thus, both transformations may actually share the same multiplicative inversion 
module in a combined architecture. An example of such hardware architecture is shown 
below. Switching between SubByte and InvSubByte is just a matter of changing the value of 
INV. INV is set to 0 for SubByte while 1 is set when InvSubByte operation is desired.



Figure 1.1. Combined SubByte and InvSubByte sharing a common multiplicative inversion module.

1.2. Previous Implementations of the S-Box

One of the most common and straight forward implementation of the S-Box for the 
SubByte operation which was done in previous work was to have the pre-computed values 
stored in a ROM based lookup table. In this implementation, all 256 values are stored in a 
ROM and the input byte would be wired to the ROM’s address bus. However, this method 
suffers from an unbreakable delay since ROMs have a fixed access time for its read and write
operation. [3] Furthermore, such implementation is expensive in terms of hardware.

A more refined way of implementing the S-Box is to use combinational logic. Such 
examples of work that implements the S-Box using this method were [1], [3] and [5]. This S-
Box has the advantage of having small area occupancy, in addition to be capable of being
pipelined for increased performance in clock frequency. The S-Box architecture discussed in 
this paper is based on the combinational logic implementation.

2. S-Box Construction Methodology

This section illustrates the steps involved in constructing the multiplicative inverse 
module for the S-Box using composite field arithmetic. Since both the SubByte and 
InvSubByte transformation are similar other than their operations which involve the Affine 
Transformation and its inverse, therefore only the implementation of the SubByte operation 
will be discussed in this paper. The multiplicative inverse computation will first be covered 
and the affine transformation will then follow to complete the methodology involved for 
constructing the S-Box for the SubByte operation. For the InvSubByte operation, the reader 
can reuse multiplicative inversion module and combine it with the Inverse Affine 
Transformation, as shown above in Figure 1.1.

The individual bits in a byte representing a GF(28) element can be viewed as 
coefficients to each power term in the GF(28) polynomial. For instance, {10001011}2 is 
representing the polynomial q7 + q3 + q + 1 in GF(28). From [2], it is stated that any arbitrary 
polynomial can be represented as bx + c, given an irreducible polynomial of x2 + Ax + B. 
Thus, element in GF(28) may be represented as bx + c where b is the most significant nibble 
while c is the least significant nibble. From here, the multiplicative inverse can be computed 
using the equation below. [2]

       1221221   cbcABbbAcxcbcABbbcbx (2.1)

From [1], the irreducible polynomial that was selected was x2 + x + λ. Since A = 1 and B = λ, 
then the equation could be simplified to the form as shown below. [1]



          12121   cbcbbcxcbcbbcbx  (2.2)

The above equation indicates that there are multiply, addition, squaring and multiplication 
inversion in GF(24) operations in Galois Field. Each of these operators can be transformed 
into individual blocks when constructing the circuit for computing the multiplicative inverse. 
From this simplified equation, the multiplicative inverse circuit GF(28) can be produced as 
shown in Figure 2.1.

Figure 2.1. Multiplicative inversion module for the S-Box. [1]

The legends for the blocks within the multiplicative inversion module from above are
illustrated in the Figure 2.2 below.

Figure 2.2. Legends for the building blocks within the multiplicative inversion module.

2.1. Isomorphic Mapping and Inverse Isomorphic Mapping

The multiplicative inverse computation will be done by decomposing the more 
complex GF(28) to lower order fields of GF(21), GF(22) and GF((22)2). In order to accomplish 
the above, the following irreducible polynomials are used. [1]

GF(22)  GF(2) : x2 + x + 1
GF((22)2)  GF(22) : x2 + x + φ (2.3)
GF(((22)2)2)  GF((22)2) : x2 + x + λ

where φ = {10}2 and λ = {1100}2.
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Computation of the multiplicative inverse in composite fields cannot be directly 
applied to an element which is based on GF(28). That element has to be mapped to its
composite field representation via an isomorphic function, δ. Likewise, after performing the 
multiplicative inversion, the result will also have to be mapped back from its composite field 
representation to its equivalent in GF(28) via the inverse isomorphic function, δ-1. Both δ and 
δ-1 can be represented as an 8x8 matrix. Let q be the element in GF(28), then the isomorphic 
mappings and its inverse can be written as δ*q and δ-1*q, which is a case of matrix 
multiplication as shown below, where q7 is the most significant bit and q0 is the least 
significant bit. [1]

The matrix multiplication can be translated to logical XOR operation. The logical 
form of the matrices above is shown below.

2.2. Composite Field Arithmetic Operations

Again from [2] and [5], any arbitrary polynomial can be represented by bx + c where 
b is upper half term and c is the lower half term. Therefore, from here, a binary number in 
Galois Field q can be spilt to qHx + qL. For instance, if q = {1011}2, it can be represented as 
{10}2x + {11}2, where qH is {10}2 and qL = {11}2. qH and qL can be further decomposed to 
{1}2x + {0}2 and {1}2x + {1}2 respectively. The decomposing is done by making use of the 
irreducible polynomials introduced at (2.3). Using this idea, the logical equations for the 
addition, squaring, multiplication and inversion can be derived.
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2.2.1. Addition in GF(24)

Addition of 2 elements in Galois Field can be translated to simple bitwise XOR 
operation between the 2 elements.

2.2.2. Squaring in GF(24)

Let k = q2, where k and q is an element in GF(24), represented by the binary number 
of {k3k2 k1 k0}2 and {q3 q2 q1 q0}2 respectively.

The x2 term can be modulo reduced using the irreducible polynomial from (2.3), x2 + 
x + φ. By setting x2 = x + φ and replacing it into x2. Doing so yields the new expressions 
below.
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The expression above is now decomposed to GF(22). Decomposing kH and kL further 
to GF(2) would yield the formula to compute squaring operation in GF(24).
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Using the irreducible polynomial from (2.3) x2 + x + 1, and setting it to x2 = x + 1, x2

is substituted and the new expression is obtained.

 
  )2(

1

32323

23

GFqqxqkxk

qxqkH




(2.4)

The kL term is also decomposed in the similar manner as shown below. The φ term is 
rewritten in its polynomial representation in the idea mentioned in Section 2.2.
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As was done earlier, the x2 term can be substituted since x2 = x + 1. For the case of x3, 
it can be obtained by multiplying x2 by x. That is, x3 = x(x) + x = x2 + x. Substituting for x2, 
x3 = x + 1 + x. The two x terms cancel out each other, leaving only x3 = 1. Performing this 
substitution to the above expression yields the following.
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(2.5)

From equations (2.4) and (2.5), the formula for computing the squaring operation in 
GF(24) is acquired as shown below.
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Equation (2.6) can then be mapped to its hardware logic diagram and it is shown in 
Figure 2.3 below.

Figure 2.3. Hardware diagram for Squarer in GF(24). [3]

2.2.3. Multiplication with constant, λ

Let k = qλ, where k = {k3 k2 k1 k0}2, q = {q3 q2 q1 q0}2 and λ = {1100}2 are elements of 
GF(24). 
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Modulo reduction can be performed by substituting x2 = x + φ using the irreducible 
polynomial in (2.3) to yield the expression below.
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As done previously in Section 2.2.2, the kH and kL terms can be further broken down 
to GF(2).
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Substituting x2 = x + 1, would then yield the following.

(2.7)

The same procedure is taken to decompose kL to GF(2).
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Again, the x2 term can be substituted since x2 = x + 1. Likewise, x3 is also substituted 
with x3 = 1, the same method from Section 2.2.2.

(2.8)

From equations (2.7) and (2.8) combined, the formula for computing multiplication 
with constant λ is shown below.

20

31

01232

023

qk

qk

qqqqk

qqk







(2.9)

Equivalently, the equation (2.9) can be mapped to its hardware diagram and it is 
shown in Figure 2.4 below.

       
   

    )2(

11

01230223

0123011233

00112233

GFqqqqxqqkxk

qqqqxqqqqqqk

qxqqxqqxqqxqk

H

H






     
   

    )2(23

233223

111

01

2323

GFqxqkxk

qqqxqqqk

xqxqxqqk

L

L







Figure 2.4. Hardware diagram for multiplication with constant λ. [3]

2.2.4. GF(24) Multiplication

Let k = qw, where k = {k3 k2 k1 k0}2, q = {q3 q2 q1 q0}2 and w = {w3 w2 w1 w0}2 are 
elements of GF(24).
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Substituting the x2 term with x2 = x + φ yields the following.
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Equation (2.10) is in the form GF(22). It can be observed that there exists addition and 
multiplication operations in GF(22). As mentioned in Section 2.2.1, addition in GF(22) is but 
bitwise XOR operation. Multiplication in GF(22), on the other hand, requires decomposition 
to GF(2) to be implemented in hardware. Also, it the expression would be too complex if 
equation (2.10) were to be broken down to GF(2). Thus, the formula for multiplication in 
GF(22) and constant φ will be derived instead. Figure 2.5 below shows the hardware 
implementation for multiplication in GF(24).
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Multiplication operation in GF(22)

Figure 2.5. Hardware implementation of multiplication in GF(24). [3]



The pre-computed multiplication result of 2 elements in GF(24) is tabled below.

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 a b c d e f
2 0 2 3 1 8 a b 9 c e f d 4 6 7 5
3 0 3 1 2 c f d e 4 7 5 6 8 b 9 a
4 0 4 8 c 6 2 e a b f 3 7 d 9 5 1
5 0 5 a f 2 7 8 d 3 6 9 c 1 4 b e
6 0 6 b d e 8 5 3 7 1 c a 9 f 2 4
7 0 7 9 e a d 3 4 f 8 6 1 5 2 c b
8 0 8 c 4 b 3 7 f d 5 1 9 6 e a 2
9 0 9 e 7 f 6 1 8 5 c b 2 a 3 4 d
a 0 a f 5 3 9 c 6 1 b e 4 2 8 d 7
b 0 b d 6 7 c a 1 9 2 4 f e 5 3 8
c 0 c 4 8 d 1 9 5 6 a 2 e b 7 f 3
d 0 d 6 b 9 4 f 2 e 3 8 5 7 a 1 c
e 0 e 7 9 5 b 2 c a 4 d 3 f 1 8 6
f 0 f 5 a 1 e 4 b 2 d 7 8 3 c 6 9

Table 2.1. Pre-computed GF(24) multiplication results.

From Table 2.1, the results for multiplication with constant λ and squaring operation 
in GF(24) can also be obtained.

2.2.5. GF(22) Multiplication

Let k = qw, where k = {k1 k0}2, q = {q1 q0}2 and w = {w1 w0}2 are elements of GF(22).

       
000110

2
11

010101010101

wqxwqxwqxwqk

wxwqxqwwqqkxkkkk





The x2 term can be substituted with x2 = x + 1 to yield the new expression below.
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(2.11)

The equation above can now be implemented in hardware as multiplication in GF(2) 
involves only the use of AND gates. The formula for computing multiplication in GF(2) is as 
follows.

00110

0110111
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


(2.12)

Figure 2.6 below illustrates its hardware implementation.
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Figure 2.6. Hardware implementation of multiplication in GF(2). [3]

The hardware implementation above differs from the (2.12) for the computation of k1. 
It can be proven that the implementation above for computing k1, would result to the 
expression in (2.12), as shown below.
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2.2.6. Multiplication with constant φ

Let k = qφ, where k = {k1 k0}2, q = {q1 q0}2 and φ = {10}2 are elements of GF(22).
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Substitute the x2 term with x2 = x + 1, yield the expression below.
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(2.13)

From (2.13), the formula for computing multiplication with φ can be derived and is 
shown below.

10

011

qk

qqk




(2.14)

The hardware implementation of multiplication with φ is shown below in Figure 2.7.

Figure 2.7. Hardware implementation of multiplication with constant φ. [3]



2.2.7. Multiplicative Inversion in GF(24)

The authors of [3] has derived a formula to compute the multiplicative inverse of q 
(where q is an element of GF(24)) such that q-1 ={q3

-1,q2
-1,q1

-1,q0
-1}. The inverses of the 

individual bits can be computed from the equation below. [3]
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(2.15)

The table containing the results of the multiplicative inverse in hexadecimal is shown 
below.

q 0 1 2 3 4 5 6 7 8 9 a b c d e f
q-1 0 1 3 2 f c 9 b a 6 8 7 5 e d 4

Table 2.2. Pre-computed results of the multiplicative inverse operation in GF(24).

3. Worked Example

Figure 3.1 below illustrates a worked example using the multiplication table, 
multiplicative inverse table in and block diagram shown in Figure 3.1.

Figure 3.1. A worked example for computing the SubByte operation.

The above example shows the propagation of the input data of 0x04 into a composite 
field based S-Box. The input data will first undergo the multiplicative inversion. The values 
at which the high and low nibbles are transformed to are indicated by the 4 bit numbers 
outside of the logical blocks. The example can be worked by hand since the tables containing 
the results for GF(24) multiplication and multiplicative inverses are provided. After the 
inverse isomorphic mapping operation of the multiplicative inversion module, the Affine 
Transformation is applied to the multiplicative inverse to yield the S-Box substituted value 
for the given input of 0xCB. Doing so yields an output of 0xF2 which agrees with the S-Box 
table provided in [4].



4. FPGA Implementation

The architecture in Figure 4.1 is implemented on a Xilinx Spartan-II XCS200-5 
FPGA. From [3], the area occupied by the S-Box can be reduced by merging the inverse 
isomorphic mapping with the Affine Transformation. Therefore, in the FPGA 
implementation, the δ-1 and Affine Transformation module is combined to reduce the slices 
occupied by the S-Box. To use the S-Box as one continuous path would be costly in terms of 
the logic delay since deep logic will severely reduce the highest possible achievable clock 
frequency. Thus, a 2-layer pipeline is used to break the logic delay in the attempt to achieve a 
higher clock frequency. Figure 4.1 below shows the applied pipeline register in the hardware 
implementation. The dotted line indicates a pipelined register.

Figure 4.1. Implemented hardware architecture on the FPGA with a 2-layer pipeline.

The S-Box was synthesized using Xilinx ISE 8.1i VHDL Compiler. The resulting 
area occupied by the S-Box with maximum place-and-route efforts for the architecture above 
is 43 slices out of the total of 2,352 slices. From the static timing report, the minimum period 
for the clock signal which can be applied to the circuit is 13.859 ns. This translates to a 
maximum clock frequency of 72.155 MHz, which is sufficient for most non-speed critical 
applications.

Higher clock frequencies can be achieved by cutting up the S-Box further by placing 
more intermediate pipeline registers within it, as was done in [3]. However, it should be 
noted that increasing the number of pipeline registers will result in an increase in area 
occupancy. Also, the latency would be higher for each additional pipeline register added. 
This is due to the fact that for every pipeline register added, it would take an additional clock 
cycle for the processed data to propagate from one register to another.

5. Field Testing

After running a simulation on the S-Box using the Xilinx ISE simulator, the 
functionality of the S-Box will have to be confirmed that it would perform as shown in the 
simulation in real life. Therefore, additional test circuitry will have to be added within the 
FPGA, integrated to the S-Box in order to perform such test. Figure 5.1 below shows the test 
circuit used for field testing.
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Figure 5.1. Test circuit for performing a field test to the S-Box.

The resulting area occupancy and minimum clock period acquired from Xilinx ISE 
using maximum place and route effort levels is 54 slices and 10.774 ns, which translate to a 
maximum clock frequency of  92.816 MHz. The clock frequency is higher in the test circuit 
as compared to the S-Box circuit is due to the logics before the first pipeline register, 
resulting to a longer setup time, as shown in Figure 2.1. In the test circuit, there is no pad to 
setup time for the S-Box since the inputs to the S-Box are internally connected within the 
FPGA.

The test circuit is implemented on a XESS XSA-200 board which houses the Spartan 
II XCS200-5 FPGA. A clock divider is used to generate a 50 MHz clock from the 100 MHz 
oscillator. This is done since 100 MHz would exceed the maximum clock frequency of the 
test circuit. An 8 bit counter is used to generate the input to the S-Box. The output of the 
counter is also connected to the address bus of the Block RAM. Every clock cycle, the 
counter will feed new input to the S-Box and the output of the S-Box is then stored into the 
address of the Block RAM pointed by the counter. For the first 254 clock cycles, the Block 
RAM is being written to with the output of the S-Box. By the 255th cycle, the value of the 
RW_sel which initial value is ‘0’, is switched to ‘1’ by the state machine. From then on, the 
values written in the Block RAM can be read via the LEDs connected to the output data bus 
of the Block RAM. The DIP switches are used as an input to the address bus of the Block
RAM. By adjusting the DIP switches, the results that were output by the S-Box can be 
verified. The address pins of the Block RAM are being pulled low by pull down resistors. 
Thus, setting the DIP switch would result in a logic ‘1’ input.

The test circuit has a latency of 2 clock cycles, since there are 2 layers of pipeline 
registers at the S-Box. Thus, the first valid data would appear in the 3rd clock cycle, which is 
address 0x02 of the Block RAM. Table 5.1 below shows the partial listing of the data 
contained in the specified memory location.



Address Data
0x00 0x00 (Junk data)
0x01 0x63 (Junk data)
0x02 0x63
0x03 0x7c
0x04 0x77
0x05 0x7b
0x06 0xf2
0x07 0x6b
0x08 0x6f

. .

. .
0xc0 0xae
0xc1 0x08
0xc2 0xba
0xc3 0x78

Table 5.1. Partial listing of the data contained in the Block RAM.

Figure 5.2 below shows the test circuit running a test to verify the output of the S-Box.
The DIP switch is set to 0x06 and the LED is displaying the data in address 0x06 which is 
0xF2.

Figure 5.2. Verifying the functionality of the S-Box on a test circuit.



6. Conclusion

A combinational logic based S-Box for the SubByte transformation is discussed and 
its internal operations are explained. As compared to the typical ROM based lookup table, 
the presented implementation is both capable of higher speeds since it can be pipelined and 
small in terms of area occupancy (43 slices for a 2 stage pipeline on a Spartan II XCS200-5 
FPGA). This compact and high speed architecture allows the S-Box to be used in both area-
limited and demanding throughput AES chips for various applications, ranging from small 
smart cards to high speed servers. 
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