
A Reconfigurable Coprocessor for Redundant Radix-4
Arithmetic

Alodeep Sanyal1, Rajat Shuvra Ghoshal1, Achintya Das1
and Susmita Sur-Kolay2

1Department of ECE, Kalyani Govt. Engineering College, Kalyani

2Advanced Computing & Microelectronics Unit, ISI, Calcutta

Abstract

We present the implementation of a reconfigurable arithmetic coprocessor based on a fast
parallel multiplication scheme proposed in [1]. In this coprocessor, we have implemented
four basic arithmetic operations (viz. addition, subtraction, multiplication and
complementation) and four primary logic operations (viz. AND, OR, EX-OR and NOT).

The coprocessor can be directly accessed from the PC by an interfacing software
implemented in [19].

In this project, we have developed a complete set of VHDL modules, which through
different stages of Xilinx Foundation Express 3.1i, finally give rise to the bitstream file
which is downloaded from the PC to the FPGA board to configure the FPGA chip (target
architecture: XC4010ETM) as the desired arithmetic coprocessor.

Acknowledgement

In the beginning, we would like to pay our sincerest thanks and gratitude to Prof. Bhabani
P. Sinha for allowing us to use his paper on “Fast Parallel multiplication using redundant
quarternary number system” [1] for FPGA implementation. We would also like to
acknowledge here the thesis work by Koushik Sinha [20] as the first step towards FPGA
implementation of the above mentioned algorithm.

We would like to take this opportunity to express our special thanks to Prof. Miguel
Ángel Aguirre Echánove [19] too, without whose kind cooperation this project work
could not have been completed in its present perspective.

We would also like to pay our gratitude to Xilinx and XESS and their many kind people
for providing all sorts of technical supports, especially to Mr. David E Vanden Bout
whose on-line book titled “Pragmatic Logic Design” helped us a lot in learning the Xilinx
Foundation Express software with all its utilities.

*Communicating Author: Alodeep Sanyal (Email: alodeep2k@yahoo.com)

mailto:alodeep2k@yahoo.com

Contents

1. Introduction . . . 1

 1.1 Introduction . . . 1
 1.2 Scope of the work . . . 2

2. Multiplication in RR-4 Number System . . . 3

 2.1 Introduction . . . 3
 2.2 The RR-4 Number System . . . 3
 2.3 Binary to RR-4 Conversion . . . 4
 2.4 RR-4 to Binary Conversion . . . 5
 2.5 An Overview of Multiplication Algorithm . . . 5
 2.6 Generation of Partial Products . . . 6
 2.7 Carry Propagation-Free Addition of Partial Products . . . 10

3. Implementation Details . . . 13

 3.1 Introduction . . . 13
 3.2 Architecture of the Coprocessor . . . 13

3.3 Instruction set of the Coprocessor . . . 17
3.4 Process of accessing the RR-4 Coprocessor from PC . . . 19

4. Conclusion . . . 20

 Bibliography . . . 21

 Chapter 1

 Introduction

1.1 Introduction

The giant strides humanity has taken in terms of technological progress, though
unfathomable, has been punctuated by significant achievements. The hallmark among
them being in the fields of VLSI Design. The greatest advantage in this field lies in the
immense scope for future developments. Improved system organization and efficient
computing algorithms have added to the reliability of high-speed processing. That too at a
low and affordable price. As a result computers have circumvaletted human progress with
a touch of finesse and efficiency and encroached into spheres like animation, electronic
design, telecommunications, space research and innumerable other ones.

One key element which has enabled computers to meet such large volumes of real-time
computations is the use of subsidiary processors alternatively termed coprocessors. The
coprocessors are capable of computing a selected small subset of operations at a very
high speed. The advantage of coprocessors is that they can be purely application specific.
They improve the overall performance of the processor by executing instructions in
parallel with the main processor. The hardware logic is designed specially keeping in
mind the job it is required to perform and also the system specifications. As an example
the 80287/80387 math coprocessor is designed to work in parallel with 80286/80386
processor. The coprocessor is designed to perform many powerful floating point
operations. This frees the main processor from performing the floating point
computations while the coprocessor simultaneously performs the numeric calculations.
Besides numeric computations, coprocessors are also available for other specific
computation – intensive application areas such as signal processing, graphics, image
processing and many others.

In recent times, designing coprocessors for parallel fast multiplications of numbers has
become an important field of research. Several algorithms have been developed for
multiplication of binary numbers that are easily being implemented on a VLSI chip. For
example, Nakamura in [2] proposed an algorithm for iterative array multiplication that
requires O(n) time to multiply 2 n-bit binary numbers and can be implemented on a VLSI
chip using an almost regular interconnection structure among the processing element.
Takagi et. al. [3] proposed an O(log n) multiplication scheme using redundant binary
trees. The authors in [4] reported two other parallel algorithms for multiplication of two
n-bit numbers using O(log n) parallel addition technique proposed in [6] using the
concept of precarry. One of these algorithms requires n + log2 n time while the other
requires approximately 3 log2 n time. Authors in [5] have given a parallel
multiplications scheme which requires 2log2 n + 2 time in balanced ternary number
system using the technique of column compression and also the concept of precarry. An

algorithm for multiplication based on combination of redundant radix-4 (RR-4)
representation of numbers and the divide-and-conquer policy used in Karatsuba-Ofman
algorithm [8] was developed by Mehlhorn and Preparata [7]. Their method required
O(log n) time for multiplication of two n-bit numbers using O(n1.59) logical elements.
Also fast parallel algorithms for radix-2 and radix-4 modular multiplication in (n+1) and
n/2 + 1 time respectively have been designed [9] for multiplication of two n-bit
numbers.

1.2 Scope of the work

This project work deals with the actual FPGA implementation of a new fast parallel
multiplication technique using the redundant quarternary or radix-4 number system (RR-
4) as proposed in [1], which is faster than any of existing multiplication techniques. This
high speed VLSI multiplication scheme can multiply two m-digit by m-digit radix-4
numbers in just (1/2) log2 m + 1 steps of addition of four radix-4 numbers. For m digit
by m-digit radix-4 integer multiplication, we first generate m partial products, each of
(m+1) radix-4 digits. These partial products are added four at a time by means of
redundant quarternary adders. The parallel addition of four (m+1) radix-4 numbers can
be performed in constant time, independent of m, without the generation and propagation
of carry. The number of computational elements required is O(m2). Because of the
regular cellular array structure, it is suitable for VLSI implementation with O(m2 log2 m)
AT-value. We have implemented this multiplication algorithm on Xilinx FPGA board
(XC4010ETM). The initial FPGA implementation of this algorithm by Sinha, Roy and
Sur-Kolay [20] addressed the implementation of the RR-4 multiplication scheme. The
present authors have extended the arithmetic scheme over addition, subtraction and
negation and incorporated the basic bit-wise logic operations (AND, OR, NOT and EX-
OR) to make it a complete arithmetic co-processor.

FPGA was chosen as the implementation device because of the many advantages offered
by the Field Programmable Gate Arrays. They have a very simple and regular structure
and are scalable, making them extremely suitable for VLSI fabrication. Another
advantage of using FPGA is that they are also easily reconfigurable, allowing the
flexibility of implementing several functions on the same FPGA device, possibly
simultaneously, at different parts of the FPGA device.

The rest of the project report is organized as follows. In Chapter 2, a detailed outline of
the multiplication algorithm using RR-4 digits is provided. In Chapter 3, the
implementation logic for the coprocessor given in [1] is discussed in details. Chapter 4
provides a general conclusion pointing towards the future advancement in this aspect.

 Chapter 2

 Multiplication in Redundant Radix-4 Number System

2.1 Introduction

The multiplication technique proposed by De and Sinha [1] using radix-4 number
representation uses one of the signed-digit (SD) number representation introduced by
Avizienis[10] to multiply two m-digit numbers in RR-4 system.We will first discuss
about the RR-4 number system.Next the algorithm for conversion from binary to RR-4
system is described, followed by multiplication algorithm as proposed in [1].

2.2 The RR-4 Number System

In RR-4 number system the radix used is 4 and individual digits belong to the set,
S={-3,-2,-1,0,1,2,3}, An m-digit redundant radix – 4 integer Y=[ym-1….y0] RR-4 ,where for
all i, yi ∈ {-3,-2,-1,0,1,2,3} and has the value Σ yi . 4i

 where i ranges from 0 to (m-1).
There are more than one possible representation of the same integer in RR-4 number
system. For example, [0 3 1]RR-4, [1 -1 1]RR-4, and [1 0 -3]RR-4 , all represent the number
(13)10. This redundancy in number representation will be exploited to perform carry
propagation – free addition, thereby allowing the parallel addition of four RR-4 numbers
in O(1) time, independent of the length of the numbers.

Of the different possible representation of RR-4 digits, one possible way of writing the
digits of set S using three binary bits for each digit are as follows, where the leftmost bit
is 0(1) if the digit is positive(negative):

 (-3)RR-4 = 111
 (-2)RR-4 = 110
 (-1)RR-4 = 101
 (0)RR-4 = 000
 (1)RR-4 = 001
 (2)RR-4 = 010
 (3)RR-4 = 011

The representation of any RR-4 number using binary bits can be visualized by a matrix of
0’s and 1’s as follows, where each column represents the respective RR-4 digit:

 (2 –1 0 3 1)RR-4 = 0 1 0 0 0
 1 0 0 1 0
 0 1 0 1 1

The topmost bit in each column indicates the sign of the digit, where 0 stands for positive
and 1 stands for negative digit.

2.3 Binary to RR-4 Conversion

Given a binary number in sign-magnitude form, we can easily convert it to equivalent
RR-4 representation by first grouping each pair of bits, starting fro the least significant bit
(lsb) position of the magnitude part of the number and the attaching a sign bit to every
such pair to obtain a representation similar to that shown in the example above. We might
need to pad a 0 at the leftmost end, if necessary. We add a 0 bit to a pair of bits to
indicate a positive RR-4 digit and a 1 to indicate negative RR-4 digit.

If the binary number is given in two’s complement form, then we proceed as follows:

STEP 1: First check the most significant bit (msb) of the number. If it is 0,then proceed
with the remaining bits in the same way as for a binary number in sign-magnitude form to
obtain the equivalent RR-4 number. If however, msb is 1 then do the following steps,

STEP 2: Complement the remaining bits of the binary number and then group them
pairwise starting from the lsb. A 0 may be padded at the leftmost end,if necessary.

STEP 3: If any group of bits is 11,then the corresponding RR-4 digit will be -1, along
with the generation of an RR-4 carry digit of 1 to the next higher digit position.

STEP 4: Now collect the carry digits from each group of 11 bits to construct a carry
vector in RR-4 system. The RR-4 digits for the other bit pairs will be obtained in the
same way as discussed in Step 2 of the algorithm. Now the three RR-4 numbers:

i> the number obtained from the pair of bits
ii> the carry vector, and
iii> a carry of 1 at the least significant RR-4 digit position,

are added to get a new RR-4 number. This addition can be done in constant time using
carry propagation-free addition described earlier.

STEP 5: The sign bit of each RR-4 digit is complemented to get the equivalent
representation in RR-4 number system of the binary number.

2.4 RR-4 to Binary Conversion

An RR-4 number may contain both positive and negative digits. If there is no negative
digit, then to convert it into binary each of the digits of RR-4 number is changed to binary
Deleting its sign bit. But if the RR-4 number has negative digit then to convert it into
binary we do as follows:
STEP 1: Two vectors are generated, one with the positive digits putting 0 in the place of
negative digits and the other with negative digits putting 0 in the place of positive digit.

STEP 2: The second vector is subtracted (using 2’s complement addition) from the first
one to get the binary number equivalent of the given RR-4 number.

Based on the above principle, the following logic has been developed:-

Let A3A2A1A0 be a RR-4 number, where Ak is represented by sa1a0 (∀ k=0,…,3). Let P
and N be two binary vectors with 4 pairs of bits is generated from the RR-4 numbers. Let
each pair be represented by p1p0, same as in the case for N.

 p0i = s a0

p1i = s a1 ∀ i=0,1,...,3

n0i = 0a + s
n1i = 1a + s ∀ i=0,1,….,3

STEP 3: In the third and final step, a full adder stage (FAk ∀ k=0,1,….,7) is employed to
obtain the final binary output bits (bi) and carry bits (ci).

bk = (pij ⊕ nij) ⊕ Cin ∀ i = 0,1,..,3 & j =0,1

ck = pij • nij + (pij ⊕ nij) ⊕ Cin ∀ i = 0,1,..,3 & j =0,1

 The point to be noted is that the carry bit for the first full adder operation (FA0) is
0 and the carry bit from the last full adder operation is Cout which will be neglected.

2.5 An Overview of the Multiplication Algorithm

Once the given binary number is converted to its equivalent redundant radix-4
representation, the multiplication of two m × m RR-4 numbers is performed in
(1/2)log2 m +1 computational steps. The algorithm is carried out in two phases as
follows:

STEP 1: The digit-by-digit products are represented by two digits of the RR-4 number
system in order to generate two vectors corresponding to each partial product. The two
vectors are generated in such a way that they can be added in constant time by parallel
carry propagation – free adders to generate the required partial product. The redundancy
in representation of numbers in RR-4 system is used to achieve this.

STEP 2: From step 1 we obtain m partial products, each consisting of (m+1) RR-4 digits.
These m partial products are the added in parallel, four at a time, by a set of redundant
quarternary adders in log4 m, i.e, in (1/2)log2 m steps . Each step of this addition
process involves two substeps:

i> generate the intermediate sum and carry vectors for each group of four partial
products

ii> add these sum and carry vectors using a carry propagation – free addition

process.

The first substep can be implemented by using ROMs. The ROM based design is
modular in nature and most suitable for VLSI implementation. The number of
computational elements required will be O(m2) , thus giving an O(m 2log m) AT-value.

It is possible to eliminate the carry propagation-free addition in the partial product
generation phase. For that, we would have to keep the digit by digit product as it is (i.e
without using any redundant representation), generating two vectors for each partial
product. Then these 2m vectors would be added in parallel by a set of approximately
2m2/4 = m2/2 redundant quarternary adders in log4 2m steps. However the drawback is
that the method would require m2/2 more computational elements than the former
technique.

2.6 Generation of Partial Products

In this section, the method for generating partial products to multiply two m-digit number
by m-digit redundant quarernary numbers will be described. It is to be noted that an m-
digit RR-4 number corresponds to an 2m+1 bit long signed binary number.

Let A and B represent the two RR-4 numbers to be multiplied. Then Pi= bi A, is the i-th
partial product. We represent the j-th digit of the I-th partial product by pij. Since we are
multiplying in RR-4 number system, each pij can take on a maximum value of +9 and a
minimum value of –9, which needs two RR-4 digits for representation.

Now the aim is to generate a digit pair [cij(2) cij(1)], with weight of cij(2) four times that
of cij(1) for each digit product pij in such a way that the sum of cij-1(2) and cij(1)
becomes a carry propagation –free addition for all j, 1<=j<=m-1.

Consider first a redundant radix – r number system in which the digits belong to the set
S= {-(r-1),(-r-2),…….,-10,1,2,……(r-2),(r-1),}. Here the magnitude of the product of two

 Multiplicand A

 Multiplicand B

bi

 biA

 Ci(2)

 Ci(1)

 Di

 Figure 2.1 Generation of Partial Product of (n+1) digits

digits can have a maximum value of (r-1)2 = (r-1)r + (-(r-1)). This can be represented by
two digits as [r-1 -(r-1)]. An alternative representation of (r-1)2 is [r-2 1]. We can
generalize the above result in the for of the following lemma given in [1]:

LEMMA 1: In multiplying two m-digit numbers in redundant radix – r number system,
the product of two digits can always be represented in two different forms with two
different pairs of digits, except in the case when the product is a multiple of r.

Below, we outline the proof of this lemma as given as given in [1] for the sake of
completeness.

Let us first consider a positive single digit by single digit product q, which we can
represent as q=[g h], where 0 <= g <= (r-1) and –(r-1) <= h <= (r-1), h ≠ 0, (i.e q is
not a multiple of r).

Note that, if g=r-1, h must be negative. We an write q as, q=g • r + h = (g + 1)r + (h - r),
when h is positive and q = g• r + h =(g-1)r + (h + r) when h is negative.

For negative product value q=[g h] we similarly note that if g= -(r-1) then h must be
positive. Hence, we can write q= g •r + h = (g+1)r + (h-r), when h is positive and q=g • r
+ h = (g-1)r + (h + r), when h is negative.

Thus we find that we an represent any digit q in redundant radix – r system as at least two
different digit pairs, provided q is not a multiple of r, which completes the proof.

From the digit pair [cij(2) cij(1)] generated for each digit-product pij , we construct two
vectors Ci(1) and Ci(2) such that,

 Ci(1) = ci,m-1(1) ci,m-2(1) …….. ci,0(1)
 Ci(2) = ci,m-1(2) ci,m-2(2) …….. ci,0(2)

The ith partial product is expressed as the sum of two vectors Ci(1) and Ci(2) (Fig.2.2).
The resultant sum vector is denoted by Di . A scheme for generating the digits of Di is
shown in the fig. In order to produce a carry propagation – free addition of two vectors,
we use the look-up table shown in Table 2.1. The look-up table gives the conversion rule
to generate the digit pair [cij(2) cij(1)] for each possible value of the digit-product pij. For
each possible value of pij, we generate the digit pair [cij(2) cij(1)] in such a way so that the
sum of cij(2) and cij(1) becomes a carry propagation- free addition for all j. To implement
this we observe the sign of previous digit-product pi,j-1. If the sign of pi,j-1 is positive we
set cij(1) to a negative value so that the magnitude of the sum of cij(1) and cij(2) never
exceeds 3 and accordingly adjust cij(2). Similarly for negative value of pi,j-1 , we choose
cij(1) to be positive. Table 2.1 shows the entries corresponding to only the positive

Logic
Module

 bi

.

.

.

.

.

.

 an-1

 aj+1
 aj

 aj-1

 a0

Ci,j+1(2)

 Ci,j+1(1)

 Ci,j(2)

 Ci,j(1)

Ci,j-1(2)

Ci,j-1(1)

Figure 2.2 Initial computation of two vectors Ci(1) and Ci(2) from biA

Logic Module

Logic Module

Ci,j+1(1)

 Ci,j(2)

 Ci,j(1)

 Ci,j-1(2)

di,j+1

di,j

Figure 2.3 Reduction of two vectors to a single vector Di by carry propagation free
addition

values of digit-product pij. For negative values of pij ‘s it can be shown that we just need
to negate the conditions and entries of Table 2.1.

2.7 Carry propagation-free Addition of Partial Products

The addition of four redundant quarterary number X,Y,U and V is performed in two
steps. In the first step we determine the intermediate sum si at each digit position i,
0<= i <= m, satisfying the relation xi + yi + zi + vi = 4 ci + si , where xi , yi , ui , vi are the
digits to be added and ci is the carry generated.

In the second step we get the final sum digits zi’s by adding si and ci-1 generated in the
first step. No carry propagation is involved in this process. To determine si’s and ci’s in
the first step we follow the following conventions:

(1) If the digit sum at the ith digit position (DSi) is positive and there is a possibility of
a positive carry from the previous lower order position (i.e the value of xi + yi + zi
+ vi lies between 1 and 2), then we choose the si as negative or zero and adjust ci
accordingly. On the other hand, if there is a possibility of a negative carry from
the previous digit position, we choose si to be positive and adjust the
corresponding ci . The rules for computing si and ci are given in Table 2.2.

(2) For negative digit sums (DSi), we need to negate the conditions in columns 2

and 3 of Table 2.2. and the intermediate sum and carry digits, si and ci so as to
generate carry propagation-free addition.

Thus it is possible to compute si and ci by examining xi , yi , ui ,v I, xi-1, yi-1 , ui-1 and
vi-1, and hence all of si’s and ci’s can be computed in parallel. We assume that the digits
x-1 , y-1, u-1and v-1 i.e to the right of the least significant digit position are all 0’s. Thus it
follows just by observing the twelve digits we can compute the final digit sum zi. We
hence have an addition procedure in constant time.

The steps involved in the generation of partial products and the method of carry
propagation-free parallel addition of four redundant radix-4 numbers are illustrated in
Figs. 2.4 and 2.5 respectively.

Pi,j pi,j-1 Ci,j(2) Ci,j(1)

9 - 2 1

6 Positive value
Negative value

2
1

-2
2

4 - 1 0
3 - 1 -1

2 Positive value
Negative value

1
0

-2
2

1 - 0 1

0 - 0 0

DSi
Positive DSi-1

ci si
Negative DSi-1

ci si

12

11

10

9

8

7

6

5

4

3

2

1

0

3 0

3 -1

3 -2

3 -3

2 0

2 -1

2 -2

2 -3

1 0

1 -1

1 -2

1 -3

0 0

3 0

2 3

2 2

 2 1

 2 0

1 3

1 2

1 1

1 0

0 3

0 2

0 1

0 0

Table 2.1. Generation of digit- pair corresponding to a digit product

Table 2.2 Sum and Carry generation during addition

Multiplicand 1 0 -3 0 First step of partial product First step of partial
Multiplier 2 -1 1 -2 generation product generation

 -2 0 6 0 ⇒ -2 0 2 0 ⇒ 0 -2 1 2 0
 0 0 1 0

 1 0 -3 0 ⇒ 1 0 -3 0 ⇒ 0 1 0 -3 0
 0 0 0 0

 -1 0 3 0 ⇒ -1 0 3 0 ⇒ 0 -1 0 3 0
 0 0 0 0

 2 0 -6 0 ⇒ 2 0 -2 0 ⇒ 0 2 -1 -2 0
 0 0 1 0

Figure 2.4 An example explaining the steps involved in the partial product generation

 3 -2 -1 1

 0 -3 0 2 Four RR-4 numbers
 to be added
 1 2 -1 0

 1 0 -3 0

 1 1 -1 3 Intermediate Sum

 1 -1 -1 0 Intermediate Carry

 1 0 0 -1 3 Final Sum

Figure 2.5 Example of carry propagation-free addition of four RR-4 numbers

 Chapter 3

 Implementation Details

3.1 Introduction

Our RR-4 arithmetic coprocessor is a 8-bit RISC processor and its design consists of two
separate units: 1) Arithmetic Logic Unit (ALU) and 2) Bidirectional Interface Unit
(which causes the interaction between a server program running on the PC and the RR-4
ALU platformed on the XS40 Board).

The RR-4 ALU consists of a i) binary ó RR-4 conversion unit (binRR4.vhd,
full_adder.vhd and RR4bin.vhd), ii) an arithmetic unit (arithmetic_unit.vhd,
RR4_adder.vhd, RR4_multiplier.vhd and partial_product.vhd), iii) a logic unit
(logic_unit.vhd), iv) a control unit (control.vhd), and v) top level of the RR-4 ALU
(system.vhd).

The Bidirectional Interface Unit on the other hand, includes i) a register unit (regsinc.vhd
and mux4.vhd), ii) a 7 segment display unit (7segmentoskk.vhd), iii) an FSM protocol unit
(fsmrdwr.vhd), iv) a decoder unit (decod.vhd), v) a glitch-filtering unit (ffcleaner.vhd), vi)
an output unit (muxsal.vhd) and vii) top level of the IU (sppinterf.vhd). A server program
written in C++ (spp.cpp along with two accessory programs xsboard.cpp and
xsboarddlg.cpp) runs in the PC environment to interact with the RR-4 ALU for the
purpose of instruction and data transfer. This application was developed by Miguel Ángel
Aguirre Echánove et. al. [19].

3.2 Architecture of the Coprocessor

3.2.1 The Arithmetic Logic Unit

The arithmetic logic unit (Fig. 3.1) is composed of the following separate logic blocks
which are neatly interconnected by a detailed glue logic established in the top level
VHDL file (system.vhd).

1. Binary to RR-4 Conversion Unit: The arithmetic operations in the RR-4 ALU
are preceded by the conversion of 8 bit input operands into their 12 bit equivalent
RR-4 representation (each RR-4 digit comprising of 3 binary bits). This operation
is delineated in the VHDL file binRR4.vhd.

After the completion of arithmetic operations, the RR-4 output digits are
reconverted to binary bits following the logic described in the VHDL codes
RR4bin.vhd and full_adder.vhd.

Figure 3.1 Block diagram representation of the RR-4 Coprocessor

Arithmetic
Unit

Logic

 Unit

Binary to RR4
 Converter

RR-4 to Binary
Converter

3 to 8
Decoder

 Bl

 Bh

 S

 A1

 A0

 B
R

L0

 L1

 T

 R0

 R1

 R2

 R3

IR

 Control Unit

Arithmetic Logic Unit

Ts
T1
T0

Ms
M1
M0

As
A1
A0

Bs
B1
B0

Rs
R1
R0

y0 y1 y2 y3

 y4 y5 y6 y7

Arithmetic Logic
 Unit

 7 0 3 0

4 0 3 0

 7 0

7 0

7 0

 7 0

 7 0

 7 0

 3 0

 7 0
 7 0

Finally, the eight, ten or sixteen bit binary outputs for logical, addition or
multiplication operations respectively are redestined to the operands registers of
the Bidirectional Interface Unit (BIU).

2. Arithmetic Unit: The arithmetic unit of the RR-4 coprocessor performs four
basic arithmetic operations using the RR-4 algorithm as discussed earlier:

i) addition,
ii) subtraction,
iii) multiplication, and
iv) complementation

The addition circuitry is composed of two distinct modules RR4_adder.vhd and
partial_product.vhd and gives the final sum in RR-4 representation.

The subtraction circuitry is nothing but the same circuit as the addition only with
the difference of changing the sign bits of the second operand (as the subtraction
can be performed by 2’s complement addition of the second operand to the first).

The multiplication is the most complicated and time consuming operation of the
coprocessor and it operates by repeated execution of the modules
RR4_multiplier.vhd and partial_product.vhd. The final output digits are brought
about by RR-4 addition of the partial products.

The fourth arithmetic operation of the coprocessor is the complementation of a
given operand. This simple operation is carried out by taking the advantage of the
sign-magnitude form of the RR-4 number system. The change of sign of the
operand sign bits keeping the two magnitude bits of each RR-4 digit unchanged
engenders the complemented output of the operand.

3. Logic Unit: The logic unit also performs four basic logic operations:

i) AND,
ii) OR,
iii) NOT, and
iv) X-OR.

The logic circuitries are nothing to do with the RR-4 representation of the
numbers. Therefore, the logic unit is a conventional logic circuit as seen in a
traditional processor.

The logic unit takes two 8-bit operands (for first, second and fourth operations),
performs bitwise logic operations and produces an 8-bit output.

4. Control Unit: The control unit of the coprocessor is rather simple and consists of
an instruction register (IR) and a 3-to-8 decoder unit. The decoder generates 8

control signals by decoding the instructions corresponding to the operations
performed by the coprocessor.

5. Top level module: The top level module of the coprocessor encapsulates all the

separate units described in it and provides the interconnection between the
separate units.

3.2.2 Bidirectional Interface Unit: This unit comes with two modules [19]:

1. A set of routines in C++ that communicates between the XS40 board and the
PC in both directions.

2. VHDL design modules that controls the interface with the PC and the FPGA.

This unit consists of a 8 bit RAM with 4 address. This memory can be accessed from a
host (PC) through the parallel port, in both write and read mode. The board display shows
the address that is selected when we are writing or reading.

The parallel port is connected to the programming connector. No additional hardware is
needed. The parallel port must be configured in SPP mode, because in this mode we can
control every single control and status line from software routines. If any other mode is
selected, the nSTROBE line will toggle when the port is written to, and the nPROGRAM
signal will erase the current programming target.

3.2.2.1 C++ program: According to the authors [19], this program was
developed in Borland C++ linked with the port access library DlPortIO, obtained
from Scientific Software Tools, Inc. It runs fine in W95/NT. First of all the
address and port lines assignment are documented in the source code. These
issues were considered in the design phase:
1. The base address for the LPT1: port is fixed. It’s not very difficult to obtain it
automatically or make it variable.
2. Some lines must be toggled due to port and on board inversions.
3. Status register transfers through bit 1 to 4. We must shift right in low nibble
and left in high nibble.
4. The program successfully communicates for our sample, in a dialog window.
It’s very easy to modify the program for other purposes.

3.2.2.2 VHDL Program: The VHDL design consists of the following modules:

i) register unit,
ii) FSM protocol unit,
iii) decoder unit.
iv) glitch filtering unit,
v) output unit,
vi) seven segment display unit, and
vii) top level BIU module (glue logic).

Fig. 3.2 shows a block diagram with the basic elements. The most interesting block is the
Finite State Machine that controls the dialog with the parallel port (Fig. 3.3).

3.3 Instruction set of the Coprocessor

This RISC Coprocessor performs eight distinct operations whose command words are
given below:

1. Addition:

2. Subtraction

3. Multiplication

4. Complement

5. Logical AND

6. Logical OR

7. Logical NOT

8. Logical XOR

 0 0 0 X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

 0 0 1

 0 1 0

 0 1 1

 1 0 0

1 0 1

 1

 1

 1 0

 1 1

Figure. 3.2 Block diagram representation of the Bidirectional Interface Unit

 Figure. 3.3 State transition diagram for the FSM protocol unit

3.4 Process of accessing the RR-4 Coprocessor from PC

The process by which the functions of the reconfigurable coprocessor implemented on a
Xilinx FPGA chip is controlled, can be demonstrated through the following steps. For
convenience, we have chosen below an example of an arithmetic operation when we wish
to execute a multiplication between to operands e.g. 21H and 89H.

STEP 1: The instruction code (in 8 bit hexadecimal form) is sent to the general purpose
register R0 of the coprocessor using the interface routine written in C++ (shown in Fig.
3.4).

Figure 3.4 The instruction code for multiplication operation (40H) is sent to the register
R0 (address: 00H)

STEP 2: The first operand (say, 21H) is sent to the general purpose register R1 of the
coprocessor.

STEP 3: The second operand (i.e. 89H) is sent to the register R2 of the coprocessor.

STEP 4: As soon as the coprocessor receives the instruction and its required operands, it
starts its internal operations (not observable from the user end i.e. the PC) and after
performing all the relevant operations, it stores the final output in the registers R1 and R2
of the coprocessor.

STEP 5: The output is read from the two registers (R1 and R2) in the coprocessor in
succession one nibble per clock cycle and displayed in the dialog box shown above.

STEP 6: Finally, the instruction and its operands are cleared from the coprocessor by
pressing the “Reset FPGA” button as shown in the dialog box in Fig 3.4.

 Chapter 4

 Conclusion

In this project, we have first designed a 8 bit arithmetic co-processor with the help of
redundant radix-4 arithmetic number system. This co-processor is supposed to work on a
parallel quarternary multiplication algorithm which is the fastest known in the domain of
parallel computing [1]. The co-processor is capable of performing four arithmetic
operations viz. addition, subtraction, multiplication and complementation, and four
logical operations viz. logical AND, logical OR, logical NOT and logical XOR. That is to
say, it is capable of performing eight operations having distinct instructions, the control
words of which are explained in section 3.3.

The redundant radix-4 arithmetic coprocessor can be easily extended to perform other
arithmetic operations. Since division can be performed by repeated multiplication, the
division operation can thus be achieved in O(log2m) time using the multiplication
algorithm in [1]. New logical operations can also be suitably derived. For example, the
shift Left, shift right operations can be done by shifting the digit columns accordingly.

We have implemented the co-processor on an FPGA. The target architecture is Xilinx
Corporation’s XC4000E device. The interfacing of the co-processor with a PC is
executed by running a C++ program thereby controlling the input-output operations from
the user domain.

Future work may include extension of this arithmetic co-processor to handle floating-
point multiplication, implementation of other arithmetic and logical operations like
division, shift left/right and evaluation of special functions like trigonometric functions
(sine, cosine, tangent) and their inverses, Fourier transforms, FFT, DCT, matrix
operations, etc. Because of the ease of VLSI implementation and fast, parallel operations,
the RR-4 number system is highly suitable for such computation-intensive application
areas like graphics, image processing, signal processing and weather forecasting.

Bibliography

[1] M. De and B. P. Sinha, “Fast Parallel multiplication using redundant quarternary
number system”, Parallel Processing Letters, Vol. 7, pp. 13-23 1997.

[2] S. Nakamura, “Algorithms for iterative array multiplication”, IEEE Trans. Comput.,
Vol.35, pp.713-719, 1986.

[3] N. Takagi, H. Yassura, S Yajima, “High Speed VLSI multiplication algorithm with a
redundnt binary addition tree” IEEE Trans. Comput., Vol. 34, pp. 789-796,1985.

[4] B. P. Sinha and P. K. Srimani, “Fast parallel algorithms for binary multiplication and
their implementation on systolic architectures”, IEEE Trans. Comput.,Vol. 38, pp. 424-
431, 1989.

[5] M. De and B. P. Sinha, “Fast parallel algorithm for ternary multiplication using
multivalued I2 L technology”, IEEE Trans. Comput.,Vol. 43, pp. 603-607,1994.

[6] R. P. Brent and H.T. Kung, “A regular layout for parallel adders”, IEEE Trans.
Comput., Vol. 31, pp. 260-264,1982.

[7] K. Mehlhorn and F. P. Preparata, “Area-time optimal VLSI integer multiplier with
minimum computation time”, Information and Control, Vol. 58, pp. 137-156, 1983.

[8] A. Karatsuba and Y. Ofman, “Multiplication of multi-digit numbers on automata,”
Soviet Physics Doclady , Vol. 7, pp-595-596, 1963.

[9] N. Takagi and S. Yajima, “Modular multiplication hardware algorithms with a
redundant representation and their application to RSA cryptosystem,” IEEE Trans.
Comput., Vol. 41, pp. 887-891,1992.

[10] A. Avizienis, “Signed-digit number representation for fast parallel arithmetic,” IRE
Trans. Electron. Comput., Vol. EC-10, pp. 389-400, 1961.

[11] P. J. Ashenden, The designer’s guide to VHDL. San Francisco, California: Morgan
Kaufman Publishers Inc. 1996.

[12] V. Vetz, J. Rose, A Marquardt, Architecture and CAD for deep-submicron FPGAs.
USA: Kluwer Academic Publishers, 1999.

[13] Z. Salcic, VHDL and FPLDs in digital systems design, prototyping and
customisation. USA : Kluwer Academic Publishers, 1998.

[14] Xilinx Data Book, 2000.

[15] J. P. Hayes, “Computer Architecture and Organisation”, McGraw Hill Publishing
Company.

[16] William Stallings, “Computer Organization”, Prentice Hall of India Ltd.

[17] M. Morris Mano, “Digital Logic and Computer Design”, Prentice Hall of India Ltd.

[18] Pucknell and Eshraghian, “Basic VLSI Design”, Prentice Hall of India Ltd.

[19] “Design and Implementation of a RAM on the XS40 Board and the Bidirectional
Interface with a PC” by Miguel Ángel Aguirre Echánove, Jon N. Tombs et. al. of
University of Sevilla, Spain.

[20] K. Sinha, S. Roy and S. Sur-Kolay, "Design of a Redundant Radix 4 Arithmetic
Coprocessor using Field-Programmable Gate Arrays", B. Tech. Thesis, Kalyani
Government Engineering College, University of Kalyani, May 2001.

