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Abstract 
 
We present the implementation of a reconfigurable arithmetic coprocessor based on a fast 
parallel multiplication scheme proposed in [1]. In this coprocessor, we have implemented 
four basic arithmetic operations (viz. addition, subtraction, multiplication and 
complementation) and four primary logic operations (viz. AND, OR, EX-OR and NOT). 
 
The coprocessor can be directly accessed from the PC by an interfacing software 
implemented in [19].  
 
In this project, we have developed a complete set of VHDL modules, which through 
different stages of Xilinx Foundation Express 3.1i, finally give rise to the bitstream file 
which is downloaded from the PC to the FPGA board to configure the FPGA chip (target 
architecture: XC4010ETM) as the desired arithmetic coprocessor. 
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                                                                               Chapter 1 
 
                                                                                                      Introduction 
 
 
 
1.1 Introduction 
 
The giant strides humanity has taken in terms of technological progress, though 
unfathomable, has been punctuated by significant achievements. The hallmark among 
them being in the fields of VLSI Design. The greatest advantage in this field lies in the 
immense scope for future developments. Improved system organization and efficient 
computing algorithms have added to the reliability of high-speed processing. That too at a 
low and affordable price. As a result computers have circumvaletted human progress with 
a touch of finesse and efficiency and encroached into spheres like animation, electronic 
design, telecommunications, space research and innumerable other ones. 
 
One key element which has enabled computers to meet such large volumes of real-time 
computations is the use of subsidiary processors alternatively termed coprocessors. The 
coprocessors are capable of computing a selected small subset of operations at a very 
high speed. The advantage of coprocessors is that they can be purely application specific. 
They improve the overall performance of the processor by executing instructions in 
parallel with the main processor. The hardware logic is designed specially keeping in 
mind the job it is required to perform and also the system specifications. As an example 
the 80287/80387 math coprocessor is designed to work in parallel with 80286/80386 
processor. The coprocessor is designed to perform many powerful floating point 
operations. This frees the main processor from performing the floating point 
computations while the coprocessor simultaneously performs the numeric calculations. 
Besides numeric computations, coprocessors are also available for other specific 
computation – intensive application areas such as signal processing, graphics, image 
processing and many others. 
 
In recent times, designing coprocessors for parallel fast multiplications of numbers has 
become an important field of research. Several algorithms have been developed for 
multiplication of binary numbers that are easily being implemented on a VLSI chip. For 
example, Nakamura in [2] proposed an algorithm for iterative array multiplication that 
requires O(n) time to multiply 2 n-bit binary numbers and can be implemented on a VLSI 
chip using an almost regular interconnection structure among the processing element. 
Takagi et. al. [3] proposed  an O(log n) multiplication  scheme using redundant binary 
trees. The authors in [4] reported two other parallel algorithms for multiplication of two 
n-bit numbers using O(log n) parallel addition technique proposed in [6] using the 
concept of  precarry. One of these algorithms requires n + log2 n time while the other 
requires approximately 3 log2 n time. Authors in [5] have given a parallel 
multiplications scheme which requires 2log2 n + 2 time in balanced ternary number 
system using the technique of column compression and also the concept of precarry. An 



algorithm for multiplication based on combination of redundant radix-4 (RR-4) 
representation of numbers and the divide-and-conquer policy used in Karatsuba-Ofman 
algorithm [8] was developed by Mehlhorn and Preparata [7]. Their method required 
O(log n) time for multiplication of two n-bit numbers using O(n1.59) logical elements. 
Also fast parallel algorithms for radix-2 and radix-4 modular multiplication in (n+1) and 
n/2 + 1 time respectively have been designed [9] for multiplication of two n-bit 
numbers. 
 
 
1.2 Scope of the work 
 
This project work deals with the actual FPGA implementation of a new fast parallel 
multiplication technique using the redundant quarternary or radix-4 number system (RR-
4) as proposed in [1], which is faster than any of existing multiplication techniques. This 
high speed VLSI multiplication scheme can multiply two m-digit by m-digit radix-4 
numbers in just (1/2) log2 m + 1 steps of addition of four radix-4 numbers. For m digit 
by m-digit radix-4 integer multiplication, we first generate m partial products, each of 
(m+1) radix-4 digits. These partial products are added four at a time by means of 
redundant quarternary adders. The  parallel addition of  four (m+1)  radix-4 numbers can 
be performed in constant time, independent  of m, without the generation and propagation  
of carry. The number of computational elements required is O(m2). Because of the 
regular cellular array structure, it is suitable for VLSI implementation  with  O(m2 log2 m) 
AT-value. We have implemented this multiplication algorithm on Xilinx FPGA board 
(XC4010ETM). The initial FPGA implementation of this algorithm by Sinha, Roy and 
Sur-Kolay [20] addressed the implementation of the RR-4 multiplication scheme. The 
present authors have extended the arithmetic scheme over addition, subtraction and 
negation and incorporated the basic bit-wise logic operations (AND, OR, NOT and EX-
OR) to make it a complete arithmetic co-processor.    
 
FPGA was chosen as the implementation device because of the many advantages offered 
by the Field Programmable Gate Arrays. They have a very simple and regular structure 
and are scalable, making them extremely suitable for VLSI fabrication. Another 
advantage of using FPGA is that they are also easily reconfigurable, allowing the 
flexibility of implementing several functions on the same FPGA device, possibly 
simultaneously, at different parts of the FPGA device. 
 
The rest of the project report is organized as follows. In  Chapter 2, a detailed outline of 
the multiplication algorithm using RR-4 digits is provided. In Chapter 3, the 
implementation logic for the coprocessor given in [1] is discussed in details. Chapter 4 
provides a general conclusion pointing towards the future advancement in this aspect. 
 
 
 
 
 



                                                                               Chapter 2 
 
   Multiplication   in  Redundant Radix-4  Number System 
 
 
2.1 Introduction 
 
The multiplication technique proposed by De and Sinha [1] using radix-4 number 
representation  uses one of the signed-digit (SD) number representation introduced by 
Avizienis[10] to multiply two m-digit numbers in RR-4 system.We will first discuss 
about the RR-4 number system.Next the algorithm for conversion from binary to RR-4 
system is described, followed by multiplication algorithm as proposed in [1].  
 
 

2.2 The RR-4 Number System 
 
In  RR-4  number  system the  radix used  is  4  and  individual  digits  belong  to  the  set,  
S={-3,-2,-1,0,1,2,3}, An m-digit redundant radix – 4 integer Y=[ym-1….y0] RR-4 ,where for 
all i,  yi  ∈ {-3,-2,-1,0,1,2,3} and has the value Σ yi . 4i

   where  i  ranges from 0 to (m-1). 
There are more than one possible representation of the same integer in RR-4 number 
system. For example,  [0 3 1]RR-4, [1 -1 1]RR-4,   and  [1 0 -3]RR-4 , all represent the number 
(13)10. This redundancy in number representation will  be exploited to perform carry 
propagation – free addition, thereby allowing the parallel addition of four RR-4 numbers 
in O(1) time, independent  of the length of the numbers. 
 
 
Of the different  possible representation of  RR-4 digits, one possible way of writing the 
digits of set S using three binary bits for each digit are as follows, where the leftmost bit 
is 0(1) if the digit is positive(negative): 
 
   (-3)RR-4 = 111 
   (-2)RR-4 = 110 
   (-1)RR-4 = 101 
    (0)RR-4  = 000 
                                     (1)RR-4  = 001 
                                     (2)RR-4  = 010 
                                     (3)RR-4  = 011 
 
The representation of any RR-4 number using binary bits can be visualized by a matrix of 
0’s and 1’s as follows, where each column represents the respective RR-4 digit: 
 
  (2 –1  0  3  1)RR-4   =         0 1 0 0 0 
                                                                 1 0 0 1 0 
                                                                 0 1 0 1 1 



 
The topmost bit in each column indicates the sign of the digit, where 0 stands for positive 
and 1 stands for negative digit. 
 
2.3 Binary to RR-4 Conversion 
 
Given a binary number in sign-magnitude form, we can easily convert it to equivalent 
RR-4 representation by first grouping each pair of bits, starting fro the least significant bit 
(lsb) position of the magnitude part of the number and the attaching a sign bit to every 
such pair to obtain a representation similar to that shown in the example above. We might 
need to pad a 0 at the leftmost end, if necessary. We add a 0 bit to a pair of bits to 
indicate a positive RR-4 digit and a 1 to indicate negative RR-4 digit. 
 
 
If the binary number is given in two’s complement form, then we proceed as follows: 
 
STEP 1: First check the most significant bit (msb) of the number. If it is 0,then proceed 
with the remaining bits in the same way as for a binary number in sign-magnitude form to 
obtain the equivalent RR-4 number. If however, msb is 1 then do the following steps, 
 
STEP 2:  Complement the remaining bits of the binary number and then group them 
pairwise starting from the lsb. A 0 may be padded at the leftmost end,if necessary. 
 
STEP 3:  If any group of bits is 11,then the corresponding RR-4 digit will be  -1, along 
with the generation of an RR-4 carry digit of 1 to the next higher digit position. 
 
STEP 4:  Now collect the carry digits from each group of 11 bits to construct a carry 
vector in RR-4 system. The RR-4 digits for the other bit pairs will be obtained in the 
same way as discussed in Step 2 of the algorithm. Now the three RR-4 numbers: 
 

i> the number obtained from the pair of bits 
ii> the carry vector, and 
iii> a carry of 1 at the least significant RR-4 digit position, 

 
are added to get a new RR-4 number. This addition can be done in constant time using 
carry propagation-free addition described earlier. 
 
STEP 5: The sign bit of each RR-4 digit is complemented to get the equivalent 
representation in RR-4 number system of the binary number. 

 
 
 
 



2.4 RR-4 to Binary Conversion 
 
An RR-4 number may contain both positive and negative digits. If there is no negative 
digit, then to convert it into binary each of the digits of RR-4 number is changed to binary  
Deleting its sign bit. But if the RR-4 number has negative digit then to convert it into 
binary we do as follows: 
STEP 1: Two vectors are generated, one with the positive digits putting 0 in the place of 
negative digits and the other with negative digits putting 0 in the place of positive digit. 
 
STEP 2: The second vector is subtracted  (using 2’s complement addition) from the first 
one to get the binary number equivalent of the given RR-4 number. 
 
Based on the above principle, the following logic has been developed:- 
 
Let A3A2A1A0 be a RR-4 number, where Ak is represented by sa1a0 ( ∀ k=0,…,3). Let P 
and N be two binary vectors with 4 pairs of bits is generated from the RR-4 numbers. Let 
each pair be represented by p1p0, same as in the case for N.  
 
 p0i = s a0 

p1i = s a1  ∀  i=0,1,...,3 
 

n0i = 0a + s  
n1i = 1a + s   ∀  i=0,1,….,3 

 
 
STEP 3: In the third and final step, a full adder stage (FAk ∀  k=0,1,….,7) is employed to 
obtain the final binary output bits (bi) and carry bits (ci). 
 
 

bk = (pij ⊕ nij) ⊕  Cin     ∀  i = 0,1,..,3  &  j =0,1  
 
ck = pij •  nij + (pij ⊕ nij) ⊕  Cin     ∀  i = 0,1,..,3  &  j =0,1 

 
 The point to be noted is that the carry bit for the first full adder operation (FA0) is 
0 and the carry bit from the last full adder operation is Cout which will be neglected.  

 
 

2.5 An Overview of the Multiplication Algorithm 
 
Once the given binary number is converted to its equivalent redundant radix-4 
representation, the multiplication of two m × m  RR-4 numbers is performed  in 
(1/2)log2 m  +1 computational steps. The algorithm is carried out in two phases as 
follows: 



  
STEP 1: The digit-by-digit products are represented by two digits of the RR-4 number 
system in order to generate two vectors corresponding to each partial product. The two 
vectors are generated in such a way that they can be added in constant time by parallel 
carry propagation – free adders to generate the required partial product. The redundancy 
in representation of numbers in RR-4 system is used to achieve this. 
 
STEP 2: From step 1 we obtain m partial products, each consisting of (m+1) RR-4 digits. 
These m partial products are the added in parallel, four at a time, by a set of redundant 
quarternary adders in log4 m, i.e, in (1/2)log2 m steps . Each step of this addition 
process involves two substeps: 
 

i> generate the intermediate sum and carry vectors for each group of four partial 
products 

 
ii> add these sum and carry vectors using a carry propagation – free addition     

process. 
 
The first substep can be implemented by using ROMs. The ROM based design is 
modular in nature and most suitable for VLSI implementation. The number of 
computational elements required will be O(m2) , thus giving  an O(m 2log m ) AT-value. 
 
It is possible to eliminate the carry propagation-free addition in the partial product 
generation phase. For that, we would have to keep the digit by digit product as it is (i.e 
without using any redundant representation), generating two vectors for each partial 
product. Then these 2m vectors would be added in parallel by a set of approximately 
2m2/4 = m2/2 redundant quarternary   adders in log4 2m steps. However the drawback is 
that the method would require m2/2 more computational elements than the former 
technique. 
 
 

2.6 Generation of Partial Products 
 
In this section, the method for generating partial products to multiply two m-digit number 
by m-digit redundant quarernary numbers will be described. It is to be noted that an m-
digit RR-4 number corresponds to an 2m+1 bit long signed binary number.  
 
Let A and B represent the two RR-4 numbers to be multiplied. Then Pi= bi A, is the i-th 
partial product. We represent the j-th digit of the I-th partial product by pij. Since we are 
multiplying in RR-4 number system, each pij can take on a maximum value of +9 and a 
minimum value of –9, which needs two RR-4 digits for representation. 
 
Now the aim is to generate a digit pair [cij(2) cij(1)], with weight of cij(2) four times that 
of  cij(1) for each digit product  pij  in such a way that the sum of  cij-1(2) and  cij(1) 
becomes a carry propagation –free addition for all j, 1<=j<=m-1. 
 



Consider first a redundant radix – r number  system in which the  digits belong to  the  set  
S= {-(r-1),(-r-2),…….,-10,1,2,……(r-2),(r-1),}. Here the magnitude of the product of two 
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       Figure 2.1 Generation of Partial Product of (n+1) digits 



digits can have a maximum value of (r-1)2 = (r-1)r + (-(r-1)). This can be represented by 
two digits as [r-1  -(r-1)]. An alternative representation of (r-1)2 is [r-2  1]. We can 
generalize the above result in the for of the following lemma given in [1]: 
 
LEMMA 1:  In multiplying two m-digit numbers in redundant radix – r number system, 
the product of two digits can always be represented in two different forms with two 
different pairs of digits, except in the case when the product is a multiple of r. 
 
Below, we outline the proof of this lemma as given as given in [1] for the sake of 
completeness. 
 
Let us first consider a positive single digit by single digit product q, which we can 
represent as q=[g  h], where 0 <= g <= (r-1) and –(r-1) <= h <= (r-1), h ≠ 0, (i.e q is 
not a multiple of r). 
 
Note that, if g=r-1, h must be negative. We an write q as, q=g • r + h = (g + 1)r + (h - r), 
when h is positive and q = g• r + h =(g-1)r + (h + r) when h is negative. 
 
For negative product value q=[g h] we similarly note that if g= -(r-1) then h must be 
positive. Hence, we can write q= g •r + h = (g+1)r + (h-r), when h is positive and q=g • r  
+ h = (g-1)r + (h + r), when h is negative. 
 
Thus we find that we an represent any digit q in redundant radix – r system as at least two 
different digit pairs, provided q is not a multiple of r, which completes the proof. 
 
From the digit pair [cij(2) cij(1)] generated for each digit-product pij , we construct two 
vectors   Ci(1) and Ci(2) such that, 
 
 
                             Ci(1) = ci,m-1(1) ci,m-2(1) …….. ci,0(1) 
       Ci(2) = ci,m-1(2) ci,m-2(2) …….. ci,0(2) 
 
The ith partial  product is  expressed  as  the sum of two vectors  Ci(1) and  Ci(2) (Fig.2.2).  
The resultant sum vector is denoted by Di . A scheme for generating the digits of Di  is 
shown  in the fig. In order to produce a carry propagation – free addition of two vectors, 
we use the look-up table shown in Table 2.1. The look-up table gives the conversion rule  
to generate the digit pair  [cij(2) cij(1)] for each possible value of the digit-product  pij. For 
each possible value of pij, we generate the digit pair [cij(2) cij(1)] in such a way so that the 
sum of cij(2) and cij(1) becomes a carry propagation- free addition for all j. To implement 
this we observe the sign of previous digit-product pi,j-1. If the sign of pi,j-1 is positive we 
set cij(1) to a negative value so that the magnitude of the sum of cij(1) and cij(2)  never 
exceeds 3 and accordingly adjust cij(2). Similarly for negative value of pi,j-1 , we choose 
cij(1)  to be positive. Table 2.1 shows the entries corresponding to only the positive  
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Figure 2.3 Reduction of two vectors to a single vector Di by carry propagation free 
addition 



values of digit-product   pij. For negative values of pij ‘s it can be shown that we just need 
to negate the conditions and entries of Table 2.1.  
 
 

2.7 Carry propagation-free Addition of Partial Products 
 
The addition of four redundant quarterary number X,Y,U and V is performed in two 
steps.   In  the  first  step we  determine the  intermediate sum si  at  each  digit  position i,  
0<= i <= m, satisfying the relation xi + yi + zi + vi = 4 ci  + si  , where xi , yi , ui  , vi  are the 
digits to be added and ci   is the carry generated. 
 
In the second step we get the final sum digits zi’s by adding si  and ci-1 generated in the 
first step. No carry propagation is involved in this process. To determine si’s and  ci’s in 
the first step we follow the following conventions: 
 

(1) If the digit sum at the ith digit position (DSi) is positive and there is a possibility of 
a positive carry from the previous lower order position (i.e the value of xi + yi + zi 
+ vi  lies between 1 and 2 ), then we choose the si  as negative or zero and adjust  ci 
accordingly. On the other hand, if there is a possibility of a negative carry from 
the previous digit  position, we choose si  to be positive and adjust the 
corresponding ci . The rules for computing si  and  ci  are given in Table 2.2. 

 
(2) For negative digit sums (DSi), we need to negate the conditions in columns 2        

and 3 of Table 2.2. and the intermediate sum and carry digits, si and ci so as to 
generate carry propagation-free addition.  

 
Thus it is possible to compute si  and  ci  by examining xi  , yi  , ui  ,v I, xi-1, yi-1  , ui-1 and   
vi-1, and hence all of  si’s  and  ci’s can be computed in parallel. We assume that the digits 
x-1 , y-1, u-1and  v-1 i.e to the right of the least significant digit position  are all 0’s. Thus it 
follows just by observing the twelve digits we can compute the final digit sum zi. We 
hence have an addition procedure in constant time. 
 
The steps involved in the generation of partial products and the method of carry 
propagation-free parallel addition of four redundant radix-4 numbers are illustrated in 
Figs. 2.4 and 2.5 respectively. 
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1                      -2 
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3                      0 

 
2                      3 

 
2                      2 

 
   2                      1 

 
   2                      0 

 
1                      3 

 
1                      2 

 
1                      1 

 
1                      0 

 
0                       3 

 
0 2 

 
0 1 

 
0                      0 

Table 2.1. Generation of digit- pair corresponding to a digit product 
 
 

Table 2.2 Sum and Carry generation during addition 



Multiplicand       1    0   -3    0             First step of partial product         First step of partial  
Multiplier           2   -1    1   -2                         generation                        product generation 
 
                         -2     0    6    0      ⇒             -2    0    2    0              ⇒    0   -2   1   2   0 
          0    0    1    0 
 
         1    0    -3    0      ⇒             1    0   -3    0                ⇒  0    1    0   -3   0 
               0    0    0    0 
 
            -1    0    3     0      ⇒             -1    0    3    0                 ⇒  0  -1    0    3    0 
         0    0    0    0   
 
     2     0    -6    0       ⇒              2    0   -2    0                 ⇒  0    2  -1   -2    0 
              0    0    1    0 
 
 
 
Figure 2.4 An example explaining the steps involved in the partial product generation 
 
 
 
 
 
                                                    3     -2     -1      1 
 
                                                    0     -3      0      2                              Four RR-4 numbers 
                                                             to be added 
                                                    1      2     -1      0 
 
                                                    1      0     -3      0 
 
 
 
                                                   1      1     -1      3    Intermediate Sum 
 
          1     -1     -1      0    Intermediate Carry 
 
 
                     1      0      0     -1      3    Final Sum 
 
 
 
 
Figure 2.5  Example of carry propagation-free addition of four RR-4 numbers 
 
 



          Chapter 3 
                                                                              
                                                         Implementation Details 
 
3.1 Introduction 
 
Our RR-4 arithmetic coprocessor is a 8-bit RISC processor and its design consists of two 
separate units: 1) Arithmetic Logic Unit (ALU) and 2) Bidirectional Interface Unit 
(which causes the interaction between a server program running on the PC and the RR-4 
ALU platformed on the XS40 Board).  
 
The RR-4 ALU consists of a i) binary ó RR-4 conversion unit (binRR4.vhd, 
full_adder.vhd and RR4bin.vhd), ii) an arithmetic unit (arithmetic_unit.vhd, 
RR4_adder.vhd, RR4_multiplier.vhd and partial_product.vhd), iii) a logic unit 
(logic_unit.vhd), iv) a control unit (control.vhd), and v) top level of the RR-4 ALU 
(system.vhd). 
 
The Bidirectional Interface Unit on the other hand, includes i) a register unit (regsinc.vhd 
and mux4.vhd), ii) a 7 segment display unit (7segmentoskk.vhd), iii) an FSM protocol unit 
(fsmrdwr.vhd), iv) a decoder unit (decod.vhd), v) a glitch-filtering unit (ffcleaner.vhd), vi) 
an output unit (muxsal.vhd) and vii) top level of the IU (sppinterf.vhd). A server program 
written in C++ (spp.cpp along with two accessory programs xsboard.cpp and 
xsboarddlg.cpp) runs in the PC environment to interact with the RR-4 ALU for the 
purpose of instruction and data transfer. This application was developed by Miguel Ángel 
Aguirre Echánove et. al. [19]. 
 
3.2 Architecture of the Coprocessor 
 
3.2.1 The Arithmetic Logic Unit 
 
The arithmetic logic unit (Fig. 3.1) is composed of the following separate logic blocks 
which are neatly interconnected by a detailed glue logic established in the top level 
VHDL file (system.vhd). 
 

1. Binary to RR-4 Conversion Unit: The arithmetic operations in the RR-4 ALU 
are preceded by the conversion of 8 bit input operands into their 12 bit  equivalent 
RR-4 representation (each RR-4 digit comprising of 3 binary bits). This operation 
is delineated in the VHDL file binRR4.vhd. 

 
After the completion of arithmetic operations, the RR-4 output digits are 
reconverted to binary bits following the logic described in the VHDL codes 
RR4bin.vhd and full_adder.vhd. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 3.1 Block diagram representation of the RR-4 Coprocessor 
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Finally, the eight, ten or sixteen bit binary outputs for logical, addition or 
multiplication operations respectively are redestined to the operands registers of 
the Bidirectional Interface Unit (BIU). 
 

2. Arithmetic Unit: The arithmetic unit of the RR-4 coprocessor performs four 
basic arithmetic operations using the RR-4 algorithm as discussed earlier: 

 
i) addition, 
ii) subtraction, 
iii) multiplication, and 
iv) complementation 

 
The addition circuitry is composed of two distinct modules RR4_adder.vhd and 
partial_product.vhd and gives the final sum in RR-4 representation. 
 
The subtraction circuitry is nothing but the same circuit as the addition only with 
the difference of changing the sign bits of the second operand (as the subtraction 
can be performed by 2’s complement addition of the second operand to the first). 
 
The multiplication is the most complicated and time consuming operation of the 
coprocessor and it operates by repeated execution of the modules 
RR4_multiplier.vhd and partial_product.vhd. The final output digits are brought 
about by RR-4 addition of the partial products. 
 
The fourth arithmetic operation of the coprocessor is the complementation of a 
given operand. This simple operation is carried out by taking the advantage of the 
sign-magnitude form of the RR-4 number system. The change of sign of the 
operand sign bits keeping the two magnitude bits of each RR-4 digit unchanged 
engenders the complemented output of the operand. 

 
3. Logic Unit: The logic unit also performs four basic logic operations: 
 

i) AND, 
ii) OR, 
iii) NOT, and 
iv) X-OR. 

 
The logic circuitries are nothing to do with the RR-4 representation of the 
numbers. Therefore, the logic unit is a conventional logic circuit as seen in a 
traditional processor. 
 
The logic unit takes two 8-bit operands (for first, second and fourth operations), 
performs bitwise logic operations and produces an 8-bit output. 
 

4. Control Unit: The control unit of the coprocessor is rather simple and consists of 
an instruction register (IR) and a 3-to-8 decoder unit. The decoder generates 8 



control signals by decoding the instructions corresponding to the operations 
performed by the coprocessor. 

 
5. Top level module: The top level module of the coprocessor encapsulates all the 

separate units described in it and provides the interconnection between the 
separate units. 

 
3.2.2 Bidirectional Interface Unit: This unit comes with two modules [19]: 
 

1. A set of routines in C++ that communicates between the XS40 board and the  
PC in both directions. 
 
2. VHDL design modules that controls the interface with the PC and the FPGA. 

 
This unit consists of a 8 bit RAM with 4 address. This memory can be accessed from a 
host (PC) through the parallel port, in both write and read mode. The board display shows 
the address that is selected when we are writing or reading. 
 
The parallel port is connected to the programming connector. No additional hardware is 
needed. The parallel port must be configured in SPP mode, because in this mode we can 
control every single control and status line from software routines. If any other mode is 
selected, the nSTROBE line will toggle when the port is written to, and the nPROGRAM 
signal will erase the current programming target. 

 
3.2.2.1 C++ program: According to the authors [19], this program was 
developed in Borland C++ linked with the port access library DlPortIO, obtained 
from Scientific Software Tools, Inc. It runs fine in W95/NT. First of all the 
address and port lines assignment are documented in the source code. These 
issues were considered in the design phase: 
1. The base address for the LPT1: port is fixed. It’s not very difficult to obtain it 
automatically or make it variable. 
2. Some lines must be toggled due to port and on board inversions. 
3. Status register transfers through bit 1 to 4. We must shift right in low nibble 
and left in high nibble. 
4. The program successfully communicates for our sample, in a dialog window. 
It’s very easy to modify the program for other purposes. 

 
3.2.2.2 VHDL Program: The VHDL design consists of the following modules: 
 

i) register unit, 
ii) FSM protocol unit, 
iii) decoder unit. 
iv) glitch filtering unit, 
v) output unit, 
vi) seven segment display unit, and 
vii) top level BIU module (glue logic). 



Fig. 3.2 shows a block diagram with the basic elements. The most interesting block is the 
Finite State Machine that controls the dialog with the parallel port (Fig. 3.3). 
 
3.3 Instruction set of the Coprocessor 
 
This RISC Coprocessor performs eight distinct operations whose command words are 
given below: 
 
 
1. Addition:  
 
     

   
2. Subtraction     
 
 
 
3. Multiplication 
 
 
 
4. Complement  
 
 
 
5. Logical AND 
 
 
 
6. Logical OR 
 
 
 
 
7. Logical NOT 
 
 
 
8. Logical XOR 
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Figure. 3.2 Block diagram representation of the Bidirectional Interface Unit 

 
 

              Figure. 3.3 State transition diagram for the FSM protocol unit 
 
 



3.4 Process of accessing the RR-4 Coprocessor from PC 
 
The process by which the functions of the reconfigurable coprocessor implemented on a 
Xilinx FPGA chip is controlled, can be demonstrated through the following steps. For 
convenience, we have chosen below an example of an arithmetic operation when we wish 
to execute a multiplication between to operands e.g. 21H and 89H. 
 
STEP 1:  The instruction code (in 8 bit hexadecimal form) is sent to the general purpose 
register R0 of the coprocessor using the interface routine written in C++ (shown in Fig. 
3.4).  
 

 
 
Figure 3.4 The instruction code for multiplication operation (40H) is sent to the register 
R0 (address: 00H) 
 
STEP 2:  The first operand (say, 21H) is sent to the general purpose register R1 of the 
coprocessor. 
 
STEP 3:  The second operand (i.e. 89H) is sent to the register R2 of the coprocessor. 
 
STEP 4:  As soon as the coprocessor receives the instruction and its required operands, it 
starts its internal operations (not observable from the user end i.e. the PC) and after 
performing all the relevant operations, it stores the final output in the registers R1 and R2 
of the coprocessor.  
 
STEP 5: The output is read from the two registers (R1 and R2) in the coprocessor in 
succession  one nibble per clock cycle and displayed in the dialog box shown above.  
 
STEP 6:  Finally, the instruction and its operands are cleared from the coprocessor by 
pressing the “Reset FPGA” button as shown in the dialog box in Fig 3.4. 
 
 
 
 
 
 
 



                                                   Chapter 4 
 
                                                                             Conclusion 
 
 
 
In this project, we have first designed a 8 bit arithmetic co-processor with the help of 
redundant radix-4 arithmetic number system. This co-processor is supposed to work on a 
parallel quarternary multiplication algorithm which is the fastest known in the domain of 
parallel computing [1]. The co-processor is capable of performing four arithmetic 
operations viz. addition, subtraction, multiplication and complementation, and four 
logical operations viz. logical AND, logical OR, logical NOT and logical XOR. That is to 
say, it is capable of performing eight operations having distinct instructions, the control 
words of which are explained in section 3.3. 
 
The redundant radix-4 arithmetic coprocessor can be easily extended to perform other 
arithmetic operations. Since division can be performed by repeated multiplication, the 
division operation can thus be achieved in O(log2m) time using the multiplication 
algorithm in [1]. New logical operations can also be suitably derived. For example, the 
shift Left, shift right operations can be done by shifting the digit columns accordingly. 
 
We have implemented the co-processor on an FPGA. The target architecture is Xilinx 
Corporation’s XC4000E device. The interfacing of the co-processor with a PC is 
executed by running a C++ program thereby controlling the input-output operations from 
the user domain. 
 
Future work may include extension of this arithmetic co-processor to handle floating-
point multiplication, implementation of other arithmetic and logical operations like 
division, shift left/right and evaluation of special functions like trigonometric functions 
(sine, cosine, tangent) and their inverses, Fourier transforms, FFT, DCT, matrix 
operations, etc. Because of the ease of VLSI implementation and fast, parallel operations, 
the RR-4 number system is highly suitable for such computation-intensive application 
areas like graphics, image processing, signal processing and weather forecasting. 
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