

1

© 2000 by X Engineering Software Systems Corp., Apex, North Carolina 27502

All rights reserved. No part of this text may be reproduced, in any form or by any means, without permission in writing from the publisher.

The author and publisher of this text have used their best efforts in preparing this text. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this text. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

XESS and CSoC Board are trademarks of X Engineering Software Systems Corp. Triscend and FastChip are trademarks of Triscend Corporation. Other product and company names mentioned are trademarks or trade names of their respective companies.

The software described in this text is furnished under a license agreement. The software may be used or copied under terms of the license agreement.

XSTE5 CSoC Board Manual

Take Notice!!

- The XSTE5 CSoC Board requires an external power supply to operate! It does not draw power through the downloading cable from the PC parallel port.
- If you are connecting a 9VDC power supply to your CSoC Board, please make sure the center terminal of the plug is positive and the outer sleeve is negative.
- The CSoC Board uses a programmable oscillator with a default frequency of 50 MHz. You must reprogram the oscillator if you want to use another frequency. The procedure for doing this is described on page 6.

XSTE5 CSoC Board Components

The XSTE5 CSoC Board is shown in Figure 1. It contains the following components:

- **Triscend TE505 CSoC**: The TE505 contains an enhanced 8032 microcontroller, two DMA controllers, 16 KBytes of internal SRAM, and an array of 512 programmable logic cells.
- **128 KByte SRAM**: The 15ns SRAM can be used for general-purpose data storage or it can hold instructions and data for the microcontroller in the CSoC.
- **128 KByte Flash RAM**: The Flash RAM can store the configuration and programs for the CSoC and restore them after a power interruption.
- **100 MHz Programmable Oscillator**: A nonvolatile programmable divider in this oscillator chip lets it output a clock in the frequency range of 50 KHz to 100 MHz to the rest of the CSoC Board.
- Seven-Segment LED: The CSoC can show simple status indicators through this display device:
- **DIP Switch**: The CSoC can receive up to eight logic inputs from this bank of switches.

- **Parallel Port**: CSoC configurations are downloaded and debugged on the CSoC Board using a PC connected to the parallel port connector.
- **PS/2 Port**: The CSoC can receive data from a standard keyboard or mouse through this connector.
- **VGA Port**: The CSoC can generate video signals for a VGA monitor attached to this connector.
- **Prototyping Interface**: The majority of the I/O pins of the CSoC are made available to external devices through this set of 84 pins on the underside of the CSoC Board.
- **Power Jack**: A 9V DC input to this jack is converted into the +3.3V and +5V supplies required by the rest of the CSoC Board circuitry.

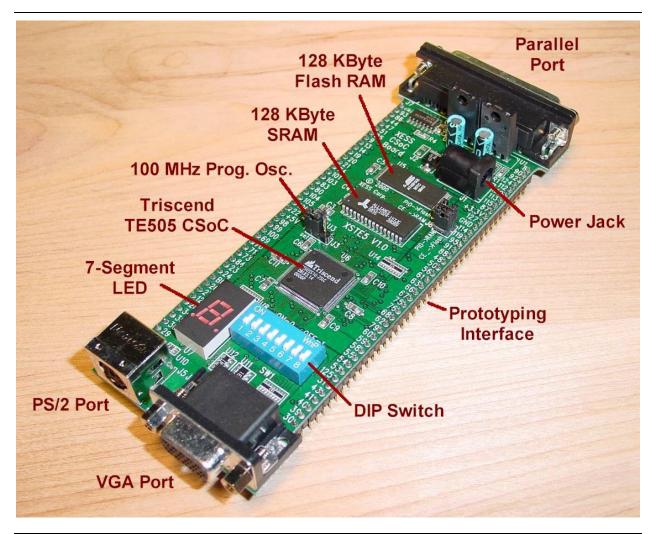


Figure 1: XSTE5 CSoC Board.

Applying Power to Your CSoC Board

You can use your CSoC Board in two ways, distinguished by the method you use to apply power to the board.

Using a 9VDC wall-mount

You can use your CSoC Board all by itself to experiment with logic and microcontroller designs. Just place the CSoC Board on a non-conducting surface as shown in Figure 2. Then apply power to jack J1 of the board from a 9V DC, 500 mA wall-mount transformer with a 2.1 mm female, center-positive plug. The on-board regulators will convert the 9V into the +3.3V and +5V supplies required by the rest of the CSoC Board circuitry.

Solderless Breadboard Installation

The two rows of pins from your CSoC Board can be plugged into a solderless breadboard with holes spaced at 0.1" intervals. (One of the A.C.E. protoboards from 3M is a good choice.) Once plugged in, all the pins of the Triscend CSoC, SRAM, and Flash RAM are accessible to other circuits on the breadboard. (The numbers printed next to the rows of pins on your CSoC Board correspond to the pin numbers of the Triscend CSoC.) Power can still be supplied to your CSoC Board though jack J1, or power can be applied directly through several pins on the underside of the board. Just connect +5V, +3.3V, and ground from an external power supply to the pins with those labels.

Connecting a PC to Your CSoC Board

The 6' downloading cable included with your CSoC Board connects it to a PC. One end of the cable attaches to the parallel port on the PC and the other connects to the female DB-25 connector (J7) at the top of your CSoC Board as shown in Figure 2.

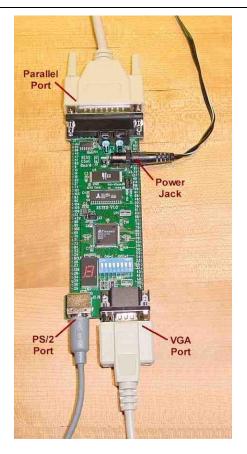


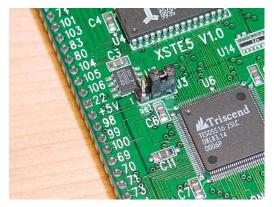
Figure 2: Connections from the XSTE5 CSoC Board to external devices.

Connecting a VGA Monitor to Your CSoC Board

You can display images on a VGA monitor by connecting it to the VGA port (connector J6) at the bottom of your CSoC Board (see Figure 2). You will have to download a VGA driver circuit to your CSoC Board to actually display an image.

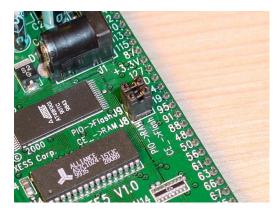
Connecting a Mouse or Keyboard to Your CSoC Board

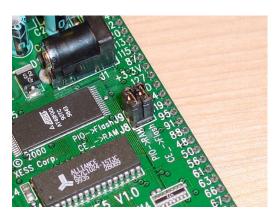
You can accept inputs from a keyboard or mouse by connecting it to the PS/2 port (connector J5) at the bottom of your CSoC Board (see Figure 2).


Setting the Jumpers on Your CSoC Board

The CSoC Board contains two sets of jumpers: one jumper that controls the mode of the programmable oscillator, and a dual-jumper that selects which memory device holds the program instructions and data for the CSoC.

The programmable oscillator is controlled by jumper J3. The position of the shunt on J3 determines the oscillator mode when power is applied to the CSoC Board. You should disconnect the power supply from jack J1 and the downloading cable from parallel port J7 before moving the shunt on J3. Otherwise the programmable oscillator will ignore the shunt setting. The oscillator will respond to the shunt setting when power is restored to the CSoC Board. The two shunt settings for J3 are discussed below.

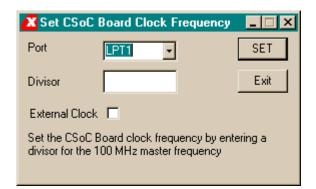

The shunt on jumper J3 should be in the "set" position if you want to program the frequency of the oscillator on the CSoC Board. Then you can use a software utility to set the programmable frequency divider in the oscillator. The divisor value is stored in Flash within the oscillator chip so it will not be cleared if power is removed from the CSoC Board.


The shunt on jumper J3 should be in the "osc" position when you want the oscillator to output a clock signal to the CSoC. The programmable oscillator will divide its internal 100 MHz frequency source by the divisor value stored in Flash. This is the default position for the shunt.

The connection of the SRAM and Flash RAM memory chips to the CSoC is controlled by jumpers J8 and J9. The orientation of the shunts on J8 and J9 will attach the chipenable of one of the memory devices to the dedicated chip-enable output of the CSoC. Then the CSoC will fetch instructions and data from this memory device. The chipenable of the other memory device will be connected to a general-purpose I/O pin of the CSoC. The CSoC can still access this memory chip but it requires some extra programming effort on your part to do so. The two possible shunt settings for J8 and J9 are shown below.

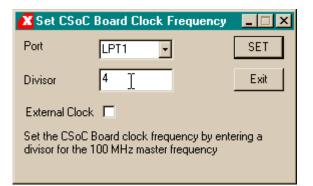
XSTE5 CSoC Board Manual

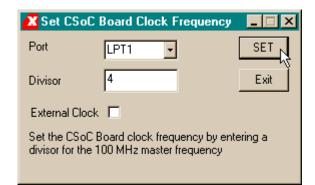
The CSoC will get instructions and data from the 128 KByte SRAM when the shunts are oriented horizontally on jumpers J8 and J9. This is the default shunt setting and should be used when you are developing a CSoC design because downloading into the SRAM is much faster than programming the Flash RAM.


The CSoC will get instructions and data from the 128 KByte Flash RAM when the shunts are oriented vertically on jumpers J8 and J9. This is the setting to use when your CSoC design is finalized and you want to store it in the Flash RAM. Then the CSoC will initialize itself from the Flash whenever power is applied to the CSoC Board.

Programming the Oscillator Frequency

Before programming your CSoC Board, you need to set the programmable oscillator to a frequency that is compatible with the Triscend TE505 CSoC. The CSoC on your board has a maximum operating frequency of 25 MHz so the oscillator output clock can't be any higher than that.


Click on the **Clock** icon to begin the oscillator programming process. The window shown below will appear.


Select the PC parallel port that is connected to your CSoC Board from the drop-down menu as shown below. In the majority of cases, this will be LPT1.

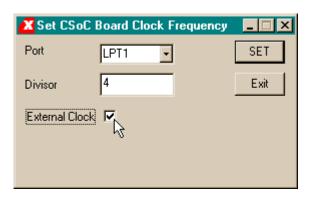
🔀 Set CSoC	Board Cl	ock Freq	uency	_ 🗆 🗙
Port	LPT1	-		SET
Divisor	LPT1 LPT2 LPT3	~		Exit
External Clock				
Set the CSoC B divisor for the 1				ering a

Next, type in the divisor for the 100 MHz master frequency. Allowable divisors are in the range [1,2052]. If you want to run the CSoC at its maximum speed of 25 MHz, enter 4 into the Divisor box.

Then click on SET to begin sending the programming commands to the oscillator chip.

The program will provide you with a list of steps to perform that will place the oscillator chip in the programming mode. Once you have done these steps in the given sequence, click on OK.

SET CSC	DC CLOCK 🛛 🛛 🕅
•	Before setting the CSoC Board frequency you must: 1) Remove the power and downloading cables from your CSoC Board 2) Place a shunt on the set position of jumper J3 3) Reconnect the power cable 4) Reconnect the downloading cable 5) Click on the OK button


The program will load the divisor into the oscillator chip very quickly. Then it will give you a list of steps to do that will end the oscillator programming mode and cause it to output the frequency you specified. Once you have done these steps in the given sequence, click on OK.

SET CS	OC CLOCK 🛛 🛛
•	The frequency of your CSoC Board has been set!! Now do these steps to activate the oscillator: 1) Remove the power and downloading cables from your CSoC Board 2) Move the shunt to the osc position of jumper J3 3) Reconnect the power cable 4) Reconnect the downloading cable 5) Click on the OK button

At this point, the programmable oscillator should be generating a clock for the CSoC derived from its internal 100 MHz frequency source.

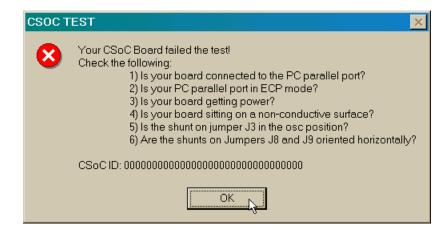
If you wish to use an external clock to drive the CSoC Board instead of the 100 MHz oscillator, just click on the External Clock checkbox and repeat the steps listed above. Then attach your external clock to the clkin pin in the upper left-hand corner of your CSoC Board. The external clock will be divided by the divisor in the programmable

oscillator and then passed to the CSoC. The maximum allowable external clock frequency is 50 MHz.

Testing Your CSoC Board

You can check the health of your CSoC Board by clicking on the CSoC Test icon. Press on the TEST button in the **Test CSoC Board** window.

🗶 Test CSoC Board 💦 📃 🗖 🗙
TEST
Exit
Connect your CSoC Board to the parallel port and click on TEST to test your board.


The LED segments on your CSoC Board will light in sequence and the **Test CSoC Board** window will indicate that the board test is in progress.

🗾 Test C	SoC Board	_ 🗆 ×
	TEST	
	Exit	
Testing C	SoC Board	

If your CSoC Board passes the test, you will see a O displayed on the seven-segment LED and the following window will appear. You can now proceed with designing CSoC-based systems using your CSoC Board.

If your CSoC Board fails the test, you will see a window that gives you several items to check that may have caused the failure.

If all these checks are positive, then test the board using another PC. In our experience, 99.9% of all problems are due to the parallel port. If you cannot get your CSoC Board to pass the test, then contact XESS Corp. at <u>help@xess.com</u>.

CSoC Board Circuitry

A high-level view of the CSoC Board circuitry is shown in Figure 3.

The eight data pins from the PC parallel port terminate on the CSoC. D0 controls the CSoC reset pin and is normally not connected (jumper J2 is left open). D1 and D2 attach to the TMS and TCK pins that control the JTAG state machine in the CSoC. Configuration and debugging commands are sent to the TDI input of the CSoC JTAG port over D3. The upper nybble of the parallel port data bits (D4–D7) is available as general-purpose inputs to the CSoC from the PC as are the four control outputs from the parallel port (C0–C3). Control bit C2 passes through two Schmitt-trigger inverters before reaching one of the global buffer inputs (GBUF5) of the CSoC, so this bit can be

used to pass a low-speed clock from the PC. The other data and control bits have slow edge transition times and are not suitable for use as clocks unless you use the Schmitt-trigger option on the CSoC input pins.

The CSoC can communicate back to the PC through the parallel port status inputs S3– S7. The most-significant status bit (S7) is used by the TDO pin of the CSoC JTAG port to pass debugging information back to the PC. The remaining status bits are available as general-purpose outputs from the CSoC back to the PC.

A DIP switch with eight individual SPST switches is attached to the CSoC. A switch is open when it is in the OFF position and the corresponding pin of the CSoC is pulled to the supply voltage through a pull-up resistor. When the switch is ON (closed), it pulls the CSoC pin directly to ground.

The CSoC receives data from a keyboard or mouse through the two inputs connected to the PS/2 port. The data input delivers a serial data stream which is accepted into the CSoC on the falling edges of the clock input.

Seven outputs from the CSoC drive a seven-segment LED digit. These same outputs also drive the inputs to a VGA monitor. Horizontal and vertical sync outputs from the CSoC generate a stable timing reference for the frames of video sent to the monitor. The other six outputs determine the color of the current pixel in the video frame. Sixtyfour pixel colors are possible (4 levels of red \times 4 levels of green \times 4 levels of blue).

The programmable oscillator output goes directly to the input of the CSoC.

The CSoC can write and read data to and from a 128 KByte SRAM and a 128 KByte Flash RAM on the CSoC Board. The SRAM and Flash RAM interface to the CSoC through a 17-bit address bus and an 8-bit data bus. Active-low chip-enable, output-enable, and write-enable control lines to the SRAM and Flash RAM are driven by the CSoC to activate the devices and either read or write a byte of data. The connection of the SRAM and Flash RAM memory chips to the CSoC is controlled by jumpers J8 and J9. The orientation of the shunts on J8 and J9 will attach the chip-enable of one of the memory devices to the dedicated chip-enable output of the CSoC. Then the CSoC will fetch instructions and data from this memory device. The chip-enable of the other memory device will be connected to a general-purpose I/O pin of the CSoC. The CSoC can still access this memory chip but it requires some extra programming effort on your part to do so.

The remaining pins of the CSoC are not committed to any specific function. They can be used as general-purpose I/O. Four of these pins also serve as inputs to global buffers in the CSoC so they are suitable as clock inputs to circuitry housed in the CSL of the CSoC. Two of the uncommitted pins (VSYS and SLAVE) control the startup and operating mode of the CSoC and you shouldn't use them unless you know what you are doing. All the pins in Figure 3 that are tagged with a small rectangle are accessible to external systems through the pins which exit the bottom of the CSoC Board. The pins on the CSoC Board are labeled with the pin number of the CSoC pin to which they attach.

Condensed and expanded lists of the CSoC Board pins and their connections are given in Table 1 and Table 2, respectively. The detailed CSoC Board schematics follow these tables.

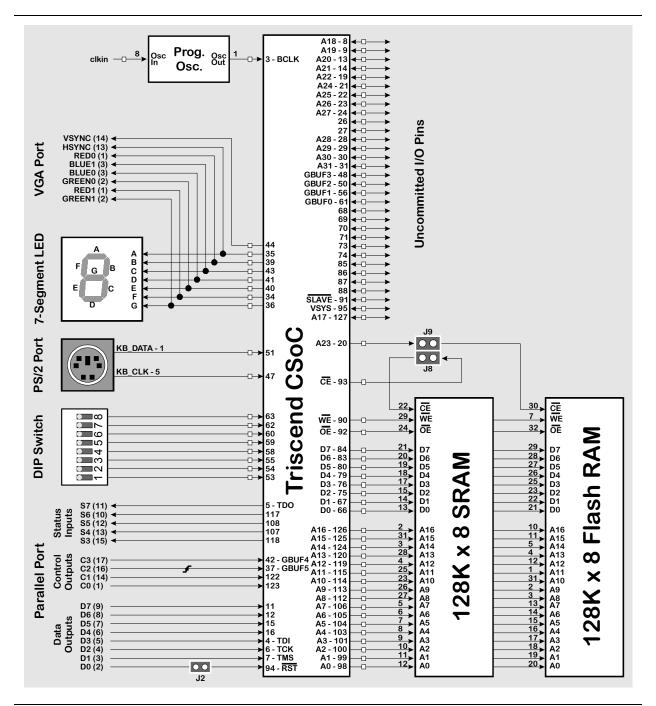


Figure 3: CSoC Board high-level schematic.

Version 1.0 6/13/00

Table 1: Connections between the TE505 and other CSoC Board components.

TE	505	CSoC Boa	rd	TE	505	CSoC Boa	rd	
Pin	Name	Function	Pin	Pin	Name	Function	Pin	P
1	GND			33	GND			6
2	XTALIN			34	PIO_18	Red1,SegF	18	6
3	XTALOUT		64,13	35	PIO_19	HSync,SegA	19	6
4	TDI	PPORT D3 (5)		36	PIO_20	Green1,SegG	20	6
5	TDO	PPORT S7 (11)**		37	GBUF5	PPORT C2 (16)**		6
6	TCK	PPORT D2 (4)**		38	GND			7
7	TMS	PPORT D1 (3)		39	PIO_21	Red0,SegB	23	7
8	A18		63	40	PIO_22	Green0,SegE	24	7
9	A19		71	41	PIO_23	Blue0,SegD	25	7
10	GND			42	GBUF4	PPORT C3 (17)		
11	PIO_0	PPORT D7 (9)		43	PIO_24	Blue1,SegC	26	
12	PIO_1	PPORT D6 (8)		44	PIO_25	Vsync	67	7
13	A20		72	45	CVCC**			
14	A21		73	46	CGND**			7
15	PIO_2	PPORT D5 (7)		47	PIO_26	PS/2 Clk	68	7
16	PIO_3	PPORT D4 (6)		48	GBUF3		46	8
17	VCC		2*	49	GND			8
18	GND			50	GBUF2		45	8
19	A22		74	51	PIO 27	PS/2 Data	69	8
20	A23	RAM/Flash /CE	75	52	VCC			8
21	A24		76	53	PIO 28	Switch1	29	8
22	A25		1	54	PIO 29	Switch2	30	6
23	A26		11	55	PIO 30	Switch3	31	8
24	A27		12	56	GBUF1		44	8
25	GND			57	GND			5
26	PIO 8		14	58	PIO 31	Switch4	32	9
27	PIO_9		15	59	PIO_32	Switch5	33	ę
28	A28		17	60	PIO_35	Switch6	34	(
29	A29		21	61	GBUF0		43	(
30	A30		22	62	PIO 38	Switch7	36	ç
31	A31		27	63	PIO_39	Switch8	42	ę
32	VCC			64	VCC			(

TE	505	CSoC Boa	rd	Т
Pin	Name	Function	Pin	Pin
65	GND			97
66	D0	RAM/Flash D0	41	98
67	D1	RAM/Flash D1	40	99
68	PIO_52		37	100
69	PIO_53		6	101
70	PIO_54		7	102
71	PIO_55		8	103
72	GND			104
73	PIO_60		9	105
74	PIO_61		77	106
75	D2	RAM/Flash D2	39	107
76	D3	RAM/Flash D3	38	108
77	CVCC			109
78	CGND			110
79	D4	RAM/Flash D4	35	111
80	D5	RAM/Flash D5	81	112
81	VCC			113
82	GND			114
83	D6	RAM/Flash D6	80	115
84	D7	RAM/Flash D7	10	116
85	PIO_62		70	117
86	PIO_63		66	118
87	PIO_64		55	119
88	XDONE		47	120
89	GND		52	121
90	WE_	RAM/Flash /WE	62	122
91	SLAVE		48	123
92	OE_	RAM/Flash /OE	61	124
93	CE_	RAM/Flash /CE	65	125
94	RST_	PPORT D0 (2)		126
95	VSYS		49	127
96	VCC		54	128

TE505

Name

GND A0

A1

A2

A3

GND

A4

A5

A6

A7

GND CVCC

CGND** A8

A9

A10

A11

VCC

A12

A13

GND

A14

A15

A16

A17

VCC

CSoC Boa

Function

RAM/Flash A0

RAM/Flash A1

RAM/Flash A2

RAM/Flash A3

RAM/Flash A4 RAM/Flash A5

RAM/Flash A6

RAM/Flash A7

RAM/Flash A8

RAM/Flash A9

RAM/Flash A10

RAM/Flash A11

RAM/Flash A12

RAM/Flash A13

RAM/Flash A15

RAM/Flash A16

Flash A17

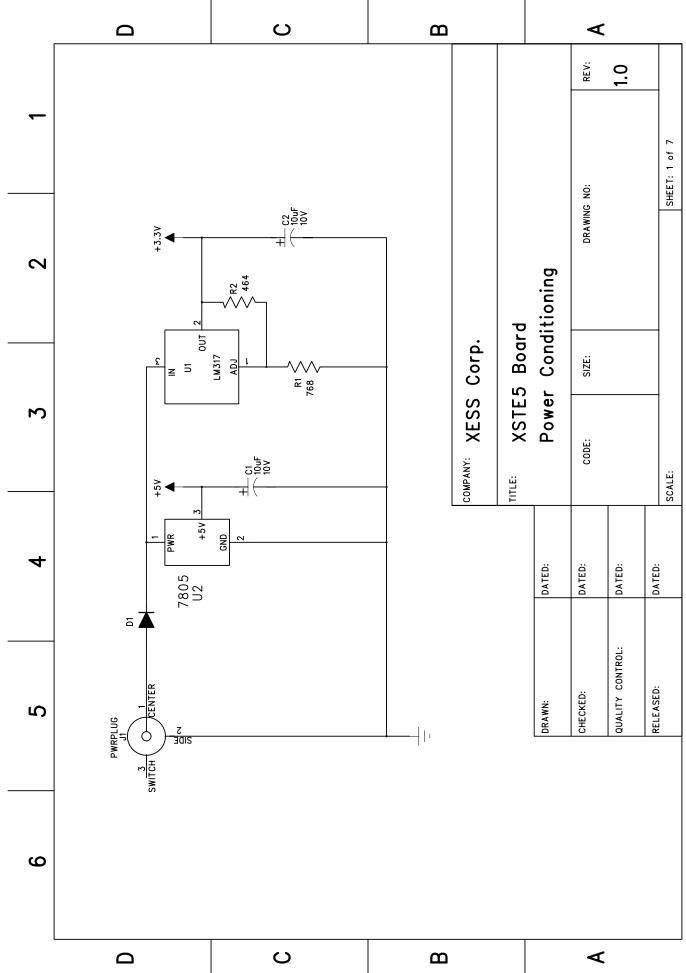
PIO_67 PPORT S6 (10)

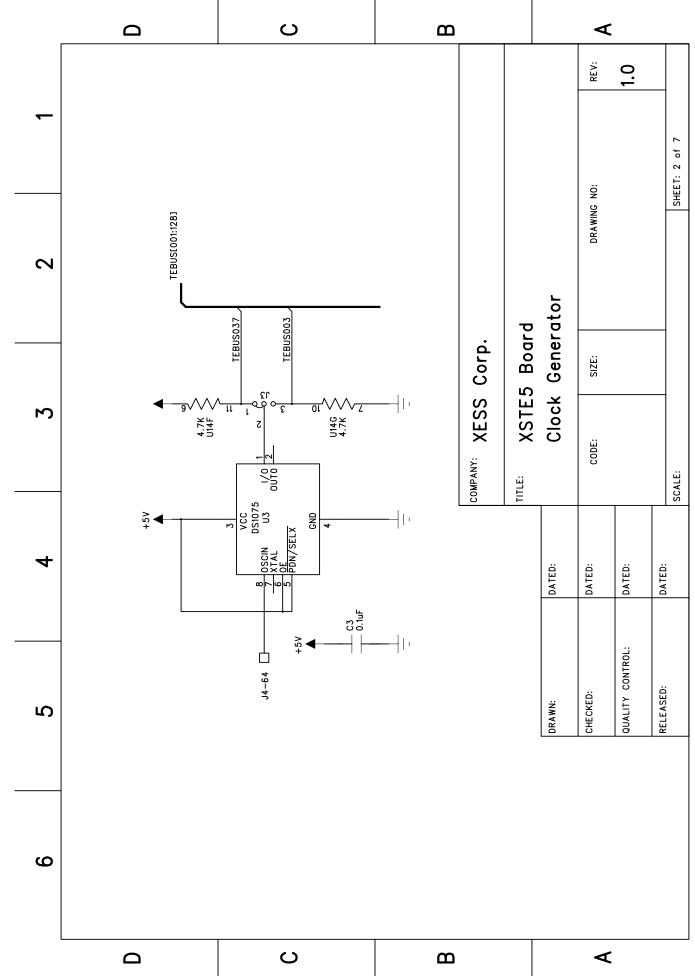
PIO_68 PPORT S3 (15)

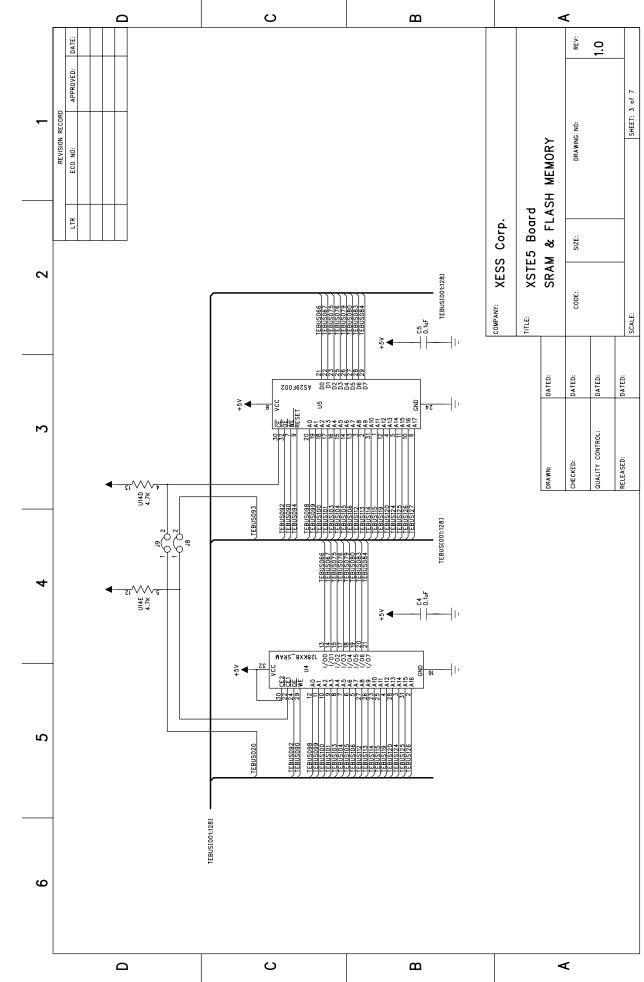
PIO_69 PPORT C1 (14)

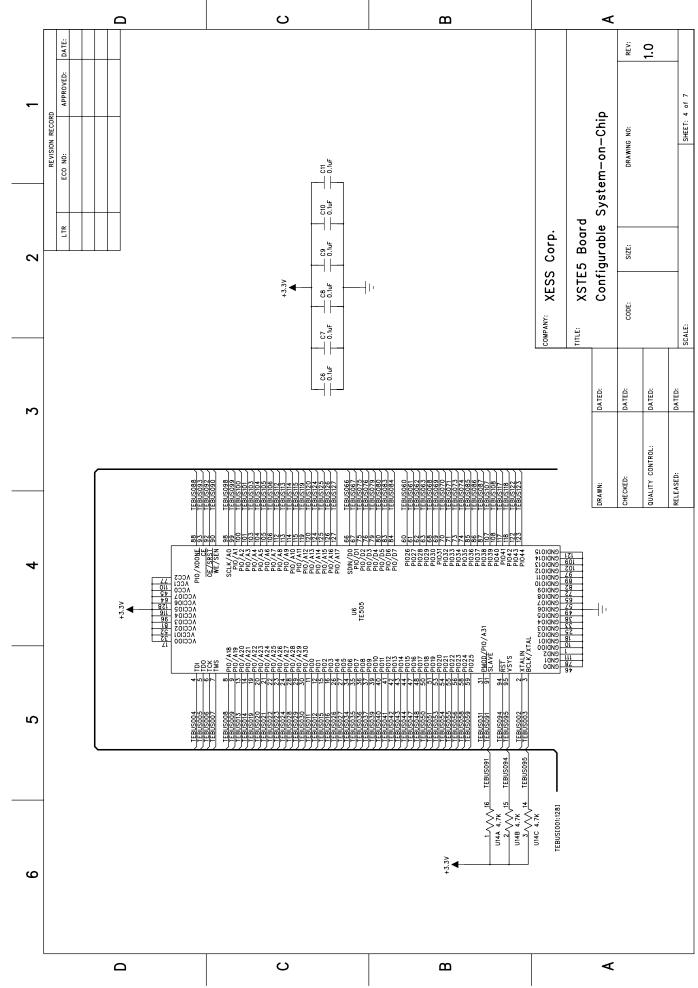
PIO_70 PPORT C0 (1) RAM/Flash A14

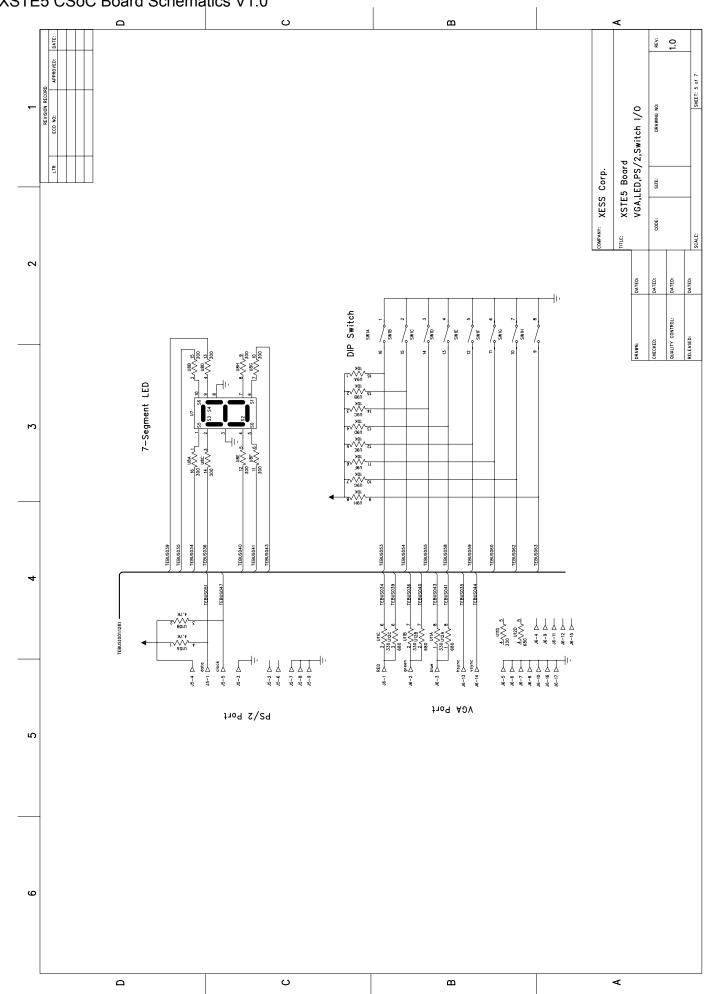
PIO_65 PPORT S4 (13) PIO_66 PPORT S5 (12)


TE505		Pins	Parallel Port	VGA	PS/2	Switches	LEDs	Flash RAM	SRAM	Prog. Osc.
1	GND									
2	XTALIN									
3	XTALOU	13								Osc Ou
4	TDI		D3 (5)							
5	TDO		S7 (11)**							
6	TCK		D2 (4)**							
7	TMS		D1 (3)							
8	A18	63								
9	A19	71								
10	GND									
11	PIO_0		D7 (9)							
12	PIO_1		D6 (8)							
13	A20	72	. ,							
14	A21	73								
15	PIO_2		D5 (7)							
16	PIO_3		D4 (6)							
17	VCC	2*								
18	GND									
19	A22	74								
20	A23	75						/CE-PIO	/CE-PIO	
21	A24	76								
22	A25	1								
23	A26	11								
24	A27	12								
25	GND									
26	PIO_8	14								
27	PIO_9	15								
28	A28	17								
29	A29	21								
30	A30	22								
31	A31	27								
32	VCC									
33	GND									
34	PIO_18	18		Red1			SegF			
35	PIO_19	19		Hsync			SegA			
36	PIO_20	20		Green1			SegG			
37	GBUF5	_•	C2 (16)**				3-			
38	GND		()							
39	PIO_21	23		Red0			SegB			
40	PIO_22	24		Green0			SegE			
41	PIO_23	25		Blue0	-		SegD			
42	GBUF4	-0	C3 (17)	2.000			2090			
43	PIO_24	26		Blue1			SegC			
44	PIO_25	67		Vsync			5590			
44	CVCC**	01		voyno						
45	CGND**									
40	PIO_26	68			Clk					


Table 2: Connections between the TE505 and other CSoC Board components.(Expanded version.)


TE505		Pins	Parallel Port	VGA	PS/2	Switches	LEDs	Flash RAM	SRAM	Prog. Osc.
48	GBUF3	46								
49	GND									
50	GBUF2	45								
51	PIO_27	69			Data					
52	VCC									
53	PIO_28	29				Switch1				
54	PIO_29	30				Switch2				
55	PIO_30	31				Switch3				
56	GBUF1	44								
57	GND									
58	PIO_31	32				Switch4				
59	PIO_32	33				Switch5				
60		34				Switch6				
61	 GBUF0	43								
62	PIO_38	36				Switch7	1			
63	PIO_39	42				Switch8				
64	VCC	-								
65	GND									
66	D0	41						D0	D0	
67	D1	40						D1	D1	
68	PIO_52	37								
69	PIO_53	6								
70	PIO_54	7								
71	PIO_55	8								
72	GND	0								
73	PIO_60	9								
74	PIO_61	77								
75	D2	39						D2	D2	
76	D2 D3	38						D2 D3	D2 D3	
70	CVCC	30						03	03	
78	CGND									
	D4	25						D4	D4	
79		35						D4		
80	D5	81						D5	D5	
81	VCC									
82	GND							5.0	5.0	
83	D6	80						D6	D6	
84	D7	10						D7	D7	
85	PIO_62	70								
86	PIO_63	66								
87	PIO_64	55								
88	XDONE	47								
89	GND	52								
90	WE_	62						/WE	/WE	
91	SLAVE	48								
92	OE_	61						/OE	/OE	
93	CE_	65						/CE	/CE	
94	RST_		D0 (2)							
95	VSYS	49								
96	VCC	54								
97	GND									
98	A0	3						A0	A0	


XSTE5 CSoC Board Manual


TE505		Pins	Parallel Port	VGA	PS/2	Switches	LEDs	Flash RAM	SRAM	Prog. Osc.
99	A1	4						A1	A1	
100	A2	5						A2	A2	
101	A3	78						A3	A3	
102	GND									
103	A4	79						A4	A4	
104	A5	82						A5	A5	
105	A6	83						A6	A6	
106	A7	84						A7	A7	
107	PIO_65		S4 (13)							
108	PIO_66		S5 (12)							
109	GND									
110	CVCC**									
111	CGND**									
112	A8	59						A8	A8	
113	A9	57						A9	A9	
114	A10	51						A10	A10	
115	A11	56						A11	A11	
116	VCC									
117	PIO_67		S6 (10)							
118	PIO_68		S3 (15)							
119	A12	50						A12	A12	
120	A13	58						A13	A13	
121	GND									
122	PIO_69		C1 (14)							
123	 PIO_70		C0 (1)							
124	 A14	60						A14	A14	
125	A15	28						A15	A15	
126	A16	16						A16	A16	
127	A17	53						A17		
128	VCC									

