

XSA Board SDRAM Controller

July 12, 2005 (Version 1.4) Application Note by D. Vanden Bout

Summary

This application note describes how to use the XSA Board SDRAM controller in both pipelined and non-pipelined
modes.

SDRAM Controller Features

The XSA Board synchronous DRAM (SDRAM)
controller core accepts simple read and write
requests on the host-side and generates the timed
waveforms required to perform these operations on
the SDRAM. With pipelining enabled, read and write
operations within a row of the SDRAM can be
dispatched almost every clock cycle. The controller
also manages the refresh operations needed to keep
the SDRAM data valid, and will place the SDRAM in
a self-refresh mode so data is retained even if the
controller ceases operation.

SDRAM Controller Interface

Generic Parameters

Several generic parameters affect the operation of
the SDRAM controller:

FREQ: This parameter sets the operating frequency
of the master clock input.

CLK_DIV: This parameter sets the divisor for the
master clock. The resulting clock is used for the
SDRAM controller and is also output on the clk1x
output. The stepped-down frequency is used to
determine the widths of the timers that sequence the
controller operations. Also, the stepped-down
frequency must be 25 MHz or higher in order to use
DLLs to synchronize operations with the external
SDRAM and to generate the stepped-down clock.
For frequencies less than 25 MHz, the controller
cannot use the DLLs and instead adjusts the clocking
so the controller and external SDRAM trigger on
opposite edges of the clock. In this case, the clock is
not divided and keeps the same frequency as the

master clock. Valid values for CLK_DIV are 1.0, 1.5,
2.0, 2.5, 3.0, 4.0, 5.0, 8.0 and 16.0.

PIPE_EN: This parameter enables pipelined
operations in the SDRAM controller.

MULTIPLE_ACTIVE_ROWS: Setting this Boolean
parameter to true enables circuitry that keeps track of
the active row in each bank of the SDRAM. Setting
this parameter to false disables the circuitry so that
only the active row in the currently accessed bank is
recorded.

MAX_NOP: This parameter sets the number of
consecutive clock cycles without a read or write
operation after which the SDRAM controller will place
the external SDRAM into self-refresh mode.

DATA_WIDTH: This parameter sets the width of the
host-side and SDRAM-side data buses.

NROWS, NCOLS: These parameters set the number
of rows of data in each bank of the external SDRAM
and the number of columns in each row. Each
column of a row contains a single word of data that is
DATA_WIDTH-bits wide. The values of these
parameters for the various XSA Boards are shown
below.

Board NROWS NCOLS
XSA-50 4096 256
XSA-100 4096 512
XSA-200 8192 512
XSA-3S1000 8192 512

HADDR_WIDTH: This parameter sets the width of
the host-side address bus.

July 12, 2005 (Version 1.4) 1

XSA SDRAM Controller

I/O Ports

The interface for the core is shown in Figure 1. The
functions of the I/O signals are as follows:

clk: This is the master clock input. The clock from
the oscillator on the XSA Board enters the FPGA
through a global clock input pin and drives this input.

sclk: This output is derived from the master clock
and it drives the clock input of the external SDRAM.

sclkfb: This input is a copy of the SDRAM clock
signal with delays added by its passage out of the
FPGA to the SDRAM and back into the FPGA
through a global clock input. The SDRAM controller
will use a DLL to compensate for these delays if the
frequency of operation is 25 MHz or higher.

clk1x: Host-side logic circuitry in the FPGA can be
clocked with this output signal that is derived from the
master clock. This clock has a frequency of
FREQ/CLK_DIV if that frequency is 25 MHz or
higher. Otherwise this clock has a frequency of
FREQ.

clk2x: This is a clock-doubled version of the master
clock if FREQ/CLK_DIV is 25 MHz or higher.
Otherwise, clk2x is just a replica of the master clock.

lock: This signal goes high when clk1x is
synchronized with the master clock.

bufclk: This is just a globally buffered version of the
master clock. It is available even when clk1x has not
locked to the master clock.

rst: This is an active-high, asynchronous reset for the
internal logic of the SDRAM controller. The reset
also causes the controller to initialize the SDRAM for
use.

rd: This active-high input initiates a read of a single
word from the SDRAM. It is sampled on the rising
clock edge and must be held high until the opBegun
signal indicates the read process has started. The
read control must be lowered before the next rising
clock edge after the done signal goes high or else
another read operation will start.

wr: This active-high input initiates a write of a single
word from the SDRAM. It is sampled on the rising
clock edge and must be held high until the opBegun
signal indicates the write process has started. The
write control must be lowered before the next rising
clock edge after the done signal goes high or else
another write operation will start.

opBegun: This synchronous output signal goes high
to indicate the initiation of a read or write operation.

earlyOpBegun: This asynchronous output signal
goes high during the clock cycle immediately
preceding the activation of the opBegun signal.

rdPending: This synchronous output signal goes
high if there are any read operations in the pipeline
that have not yet delivered their data from the
SDRAM.

done: This synchronous output signal goes high to
indicate the completion of the currently active read or
write operation. It remains high for a single clock
cycle.

rdDone: This synchronous output signal goes high to
indicate the completion of a pipelined read operation.
It remains high for a single clock cycle.

hAddr: The address of the SDRAM word that is to be
read or written is passed through this input bus. The
address value must be held stable until the opBegun
signal goes high. The two most-significant bits of
hAddr correspond to the bank address bits of the
SDRAM, the next log2(NROWS) bits of hAddr
correspond to the row address within that bank, and
the least-significant log2(NCOLS) bits correspond to
the column address within that row.

hDIn: The data to be written to the SDRAM enters
through this input bus. The data value must be held
stable until the opBegun signal goes high.

hDOut: The data read from the SDRAM comes out
on this bus. This data must be latched by the host-
side logic on the rising clock edge after the done or
rdDone signal goes high.

cke: This output drives the clock-enable input of the
SDRAM.

cs_n: This output drives the chip-select of the
SDRAM.

ras_n: This output drives the RAS input of the
SDRAM.

cas_n: This output drives the CAS input of the
SDRAM.

we_n: This output drives the write-enable input of the
SDRAM.

ba: This two-bit bus selects one of the four banks of
memory in the SDRAM.

July 12, 2005 (Version 1.4) 2

XSA SDRAM Controller

sAddr: The row and column address fields for the
SDRAM memory location are output on this bus.

sData: The data word to be written to SDRAM exits
the FPGA on this bus during write operations, and
data from the SDRAM enters the FPGA on this bus
during read operations.

dqmh: This output drives the SDRAM input that
controls the drivers for the upper half of the data bus
during read operations.

dqml: This output drives the SDRAM input that
controls the drivers for the lower half of the data bus
during read operations.

status: The current state of the SDRAM controller is
made available on this four-bit bus. This is used only
for diagnostic purposes.

Using the SDRAM Controller

Non-Pipelined Read Operation
The timing waveforms for a non-pipelined read
operation are shown in Figure 2. This example
assumes the read operation accesses a memory
location in the currently active bank and row of the
SDRAM. The sequence of actions is:

Cycle 1: The SDRAM address is applied and the
read control signal is driven high. If the SDRAM
controller is able to begin the read operation, then the
earlyOpBegun signal goes high. The address and
read control must be held stable at least until the next
rising edge after earlyOpBegun goes high.

Cycle 2: The earlyOpBegun signal goes low and the
opBegun signal goes high. The column address is
output on the pins that go to the SDRAM chip and the
SDRAM control signals are set to initiate a read
operation.

Cycle 3: The SDRAM initiates a read of the given
column address on the rising clock edge.

Cycle 4: The SDRAM waits for the data to arrive
from the given address.

Cycle 5: The data from the SDRAM arrives
sometime during this cycle and is guaranteed to be
stable by the end of the cycle.

Cycle 6: The data from the SDRAM is clocked into a
register on the rising clock edge. The done signal
goes high to signal the host-side logic that the data is
available on the hDOut bus. The read control must
be lowered before the next rising clock edge or else
another read operation will be initiated.

Cycle 7: The done signal goes low again but the data
on hDOut remains stable until another read operation
is completed.

In the previous sequence of actions, it was assumed
the read operation was initiated as soon as the read
control signal was asserted. There are several cases
when the SDRAM controller delays the initiation of
the read operation:

When a row is being refreshed. In this case,
SDRAM controller completes the row refresh
operation. Then the SDRAM banks are precharged
and the bank and row containing the given address
are activated. Then the read operation can progress
as described above.

When the given address is not in the currently
active bank or row of the SDRAM. In this case, the
controller precharges the SDRAM banks and the
bank and row containing the given address is
activated. Then the read operation can progress as
described above.

When the initiation of the read operation is delayed,
the earlyOpBegun and opBegun signals are held low
until the read operation is actually initiated.

Non-Pipelined Write Operation
The timing waveforms for a non-pipelined write
operation are shown in Figure 3. This example
assumes the write operation accesses a memory
location in the currently active bank and row of the
SDRAM. The sequence of actions is:

Cycle 1: The SDRAM address and the data to be
stored there are applied and the write control signal is
driven high. If the SDRAM controller is able to begin
the write operation, then the earlyOpBegun signal
goes high. The address, data and write control must
be held stable at least until the next rising edge after
earlyOpBegun goes high.

Cycle 2: The earlyOpBegun signal goes low and the
opBegun signal goes high. The data and the column
address are output on the pins that go to the SDRAM
chip and the SDRAM control signals are set to initiate
the write operation. The done signal goes high
because the SDRAM controller is effectively done at

July 12, 2005 (Version 1.4) 3

XSA SDRAM Controller

this point since the SDRAM can complete the write
operation on its own.

Cycle 3: On the rising clock edge the SDRAM
latches the address and data and initiates a write
operation. The output drivers on the data bus are
disabled to free the SDRAM data bus.

Cycles 4 and 5: The SDRAM continues its internal
operations to write the data into the given address.

In the previous sequence of actions, it was assumed
the write operation was initiated as soon as the write
control signal was asserted. There are several cases
when the SDRAM controller delays the initiation of
the write operation:

When a row is being refreshed. In this case,
SDRAM controller completes the row refresh
operation. Then the SDRAM banks are precharged
and the bank and row containing the given address
are activated. Then the write operation can progress
as described above.

When the given address is not in the currently
active bank or row of the SDRAM. In this case, the
controller precharges the SDRAM banks and the
bank and row containing the given address is
activated. Then the write operation can progress as
described above.

When a read operation is already in progress. In
this case, the SDRAM controller completes the read
operation already in progress. Then the write
operation is initiated along with any preceding
precharge and activation steps that are needed.

Pipelined Read Operation
The timing waveforms for three pipelined read
operations are shown in Figure 4. New read
operations enter the pipeline by keeping the rd signal
high while supplying a new address each time the
earlyOpBegun or opBegun signal indicates the
previous read has started. This example assumes all
three read operations access memory locations in the
currently active bank and row of the SDRAM. If a
read to an address in another bank or row occurs, the
SDRAM controller will complete any reads currently
in progress and then activate the new bank and row
before raising the earlyOpBegun and opBegun
signals.

Pipelined Write Operation
The timing waveforms for a three pipelined write
operations are shown in Figure 5. New write
operations enter the pipeline by keeping the rd signal
high while supplying a new address each time the
earlyOpBegun or opBegun signal indicates the
previous write has started. This example assumes all
three write operations are to memory locations in the
currently active bank and row of the SDRAM. If a
write to an address in another bank or row occurs,
the SDRAM controller will complete any writes
currently in progress and then activate the new bank
and row before raising the earlyOpBegun and
opBegun signals.

SDRAM Controller Application

A simple memory tester application is used to
demonstrate the use of the SDRAM controller core.
The memory tester performs the following functions:

• It initializes a pseudo-random number generator
(RNG) with a known seed value.

• It writes a sequence of random numbers
throughout a range of memory addresses.

• It re-initializes the RNG with the seed value.

• It reads back the contents of memory and
compares it to the sequence from the RNG. Any
mismatch indicates an error reading or writing the
memory.

The source files that describe this application are:

common.vhd: Some functions and definitions useful
in many applications are provided in this file.

memtest.vhd: The memory tester state machine is
described in this file.

randgen.vhd: This file contains the RNG used by the
memory tester.

sdramcntl.vhd: This file describes the core state
machine of the SDRAM controller.

xsasdramcntl.vhd: This file creates a wrapper
around the SDRAM controller core to customize it for
the XSA Board.

July 12, 2005 (Version 1.4) 4

XSA SDRAM Controller

test_board_core.vhd: This file combines the generic
memory tester and the SDRAM controller core to
make the complete SDRAM tester.

test_board.vhd: This file instantiates the
test_board_core module to create an SDRAM tester
for a particular model of XSA Board.

test_board.ucf: This file contains the pin
assignments for mapping the SDRAM tester to a
particular board.

test_board.npl: This file tells the Xilinx WebPACK
tools how to combine the source files to create the
SDRAM tester application for a particular model of
XSA Board.

Once the memory tester application is compiled and
downloaded into the XSA Board, you should see the
sequence 2 3 0 displayed on the LED. (If the
memory tester detects an error in the SDRAM, then
you will see 2 3 E.)

July 12, 2005 (Version 1.4) 5

rst

hDOut

DCAS

clk2x

DQMH

clk1x

DA

bufclk

DBA

rd

DCKE

rdDone
done
rdPending
opBegun
earlyOpBegun DWE

hDIn

DRAS

hAddr

DCS

wr

DQ

lock

DQML

status

clk

global
clock
inputs

DCLK

SDRAM

FPGA Oscillator

XSASDRAMCntl

Host Side SDRAM Side

FPGA
Host Logic

sclkfb

sAddr

dqml
dqmh

ba

sData

we_n
cas_n
ras_n
cs_n

cke
sclk

Figure 1: XSA Board SDRAM controller interfaces.

July 12, 2005 (Version 1.4) 6

XSA SDRAM Controller

clk

0 7654321

rd

hAddr

earlyOpBegun

opBegun

sAddr

sData

hDOut

done

rdDone

read command sent to SDRAM

SDRAM begins read operation

data from SDRAM available

A1

A1

D(A1)

D(A1)

Figure 2: SDRAM controller non-pipelined read operation.

July 12, 2005 (Version 1.4) 7

XSA SDRAM Controller

clk

wr

hAddr

hDIn

earlyOpBegun

opBegun

sAddr

sData

done

write command sent to SDRAM

SDRAM begins write operation

SDRAM write operation completes

0 54321

D1

A1

A1

D1

Figure 3: SDRAM controller non-pipelined write operation.

July 12, 2005 (Version 1.4) 8

XSA SDRAM Controller

clk

rd

hAddr

earlyOpBegun

opBegun

rdPending

sAddr

sData

hDOut

done

rdDone

read command sent to SDRAM

SDRAM begins read operation

data from SDRAM available

0 7654321

A1 A2

8

A3

A1 A2 A3

D(A1)

D(A1)

D(A2)

D(A2)

D(A3)

D(A3)

Figure 4: SDRAM controller pipelined read operations.

July 12, 2005 (Version 1.4) 9

XSA SDRAM Controller

clk

wr

hAddr

hDIn

earlyOpBegun

opBegun

sAddr

sData

done

write command sent to SDRAM

SDRAM begins first write operation

first SDRAM write operation completes

0 54321

D1 D2

D2

D3

D3

A1 A2

A1

A3

A2 A3

D1

Figure 5: SDRAM controller pipelined write operations.

Revision Date Comments

1.4 07/12/05 Updated for SDRAM controller Version 1.4.
1.3 06/27/05 Updated for SDRAM controller Version 1.3.
1.2 04/22/04 Updated for SDRAM controller Version 1.2.
1.1 03/17/04 Updated for SDRAM controller Version 1.1.
1.0 09/27/01 Initial version.

July 12, 2005 (Version 1.4)
 10

	XSA Board SDRAM Controller
	Summary
	SDRAM Controller Features
	SDRAM Controller Interface
	Generic Parameters
	I/O Ports

	Using the SDRAM Controller
	Non-Pipelined Read Operation
	Non-Pipelined Write Operation
	Pipelined Read Operation
	Pipelined Write Operation

	SDRAM Controller Application
	Figure 1: XSA Board SDRAM controller interfaces.
	Figure 2: SDRAM controller non-pipelined read operation.
	Figure 3: SDRAM controller non-pipelined write operation.
	Figure 4: SDRAM controller pipelined read operations.
	Figure 5: SDRAM controller pipelined write operations.

