

Dualport Module for the SDRAM
Controller

July 12, 2005 (Version 1.0) Application Note by D. Vanden Bout

Summary

This application note describes a module that adds dualport read/write access to the host-side port of the XESS
SDRAM controller.

Dualport Features

The dualport module attaches to the host-side port of
the XESS SDRAM controller and splits it into two
identical host-side ports. Each of these ports
operates identically to the orignal host-side port so no
modifications are needed in any applications that
used the original SDRAM controller. An application
performs memory read/write operations on its port
independently of any operations that occur on the
other port. The total SDRAM bandwidth can be
allocated between the two ports to match the data
rates of the attached applications. Dualport modules
can be cascaded to build SDRAM interfaces with
three or more independent ports.

Dualport Interface

Generic Parameters

Several generic parameters affect the operation of
the dualport module:

PIPE_EN: This parameter should be set to true if the
SDRAM controller has pipelined operations enabled.

PORT_TIME_SLOTS: This parameter allocates the
SDRAM bandwidth between the ports by assigning
time slots within an interval to each port.

DATA_WIDTH: This parameter should be set to the
same width as the host-side databus of the SDRAM
controller.

HADDR_WIDTH: This parameter should be set to the
same width as the host-side address bus of the
SDRAM controller.

I/O Ports

The interface to the dualport module for the XSA
Board is shown in Figure 1, while Figure 2 depicts the
interface for the XSB Board. The functions of the I/O
signals are as follows:

clk: This is the master clock input. It should be
driven at the same clock rate as the SDRAM
controller to which the dualport module is attached.

The host-side signals for the SDRAM controller are
replicated to form two independent ports. The
functions and timing for the signals shown below are
identical to those on the host-side interface of the
SDRAM controller.

Port 0 Port 1 Port to SDRAM
Controller

rst0 rst1 rst
rd0 rd1 rd
wr0 wr1 wr
earlyOpBegun0 earlyOpBegun1 earlyOpBegun
opBegun0 opBegun1 opBegun
rdPending0 rdPending1 rdPending
done0 done1 done
rdDone0 rdDone1 rdDone
hAddr0 hAddr1 hAddr
hDIn0 hDIn1 hDIn
hDOut0 hDOut1 hDOut
status0 status1 status

Dualport Application

A simple memory tester application is used to
demonstrate the use of the dualport module. The
memory tester is composed of two identical modules,

July 12, 2005 (Version 1.0) 1

Dualport Module

one which tests the lower half of memory while the
other tests the upper half. Each memory tester
module accesses its section of the memory through
one of the ports on the dualport module. (The
module that tests the lower half of memory is
attached to port 0; the other memory tester module
attaches to port 1.) Each memory tester does the
following:

• It initializes a pseudo-random number generator
(RNG) with a known seed value.

• It writes a sequence of random numbers
throughout its range of memory addresses.

• It re-initializes the RNG with the seed value.

• It reads back the contents of memory and
compares it to the sequence from the RNG. Any
mismatch indicates an error reading or writing the
memory.

The source files that describe this application are:

common.vhd: Some functions and definitions useful
in many applications are provided in this file.

memtest.vhd: The memory tester state machine is
described in this file.

randgen.vhd: This file contains the RNG used by the
memory tester.

sdramcntl.vhd: This file describes the SDRAM
controller and the associated dualport module.

xsasdramcntl.vhd: This file creates a wrapper
around the SDRAM controller core to customize it for
the XSA Board.

test_dualport_core.vhd: This file combines two
memory testers, the dualport module and the
SDRAM controller core to make the complete
SDRAM tester.

test_dualport.vhd: This file instantiates the
test_dualport_core module to create a dualport
SDRAM tester for a particular board.

test_dualport.ucf: This file contains the pin
assignments for the I/O signals of the dualport
SDRAM tester for a particular board.

test_dualport.npl: This file tells the Xilinx WebPACK
tools how to combine the source files to create the
dualport SDRAM tester application for a particular
board.

Once the memory tester application is compiled and
downloaded into an XSA Board, you should see the
status of the upper and lower SDRAM tests reflected
in the activation of the LED segments. The LED
segments are labeled as follows:

S0

S1S2 S3

S4S5

S6

The meaning of the LED segment activations is as
follows:

Lower Memory Test Status S0 S1 S2
Initialization ON OFF OFF
Writing RNG sequence to the
lower half of SDRAM OFF ON OFF

Reading data from the lower
half of the SDRAM and
comparing to RNG sequence

OFF OFF ON

Passed – no mismatches found OFF OFF OFF
Failed – mismatches found ON ON ON

Upper Memory Test Status S3 S4 S5

Initialization ON OFF OFF
Writing RNG sequence to the
upper half of SDRAM OFF ON OFF

Reading data from the upper
half of the SDRAM and
comparing to RNG sequence

OFF OFF ON

Passed – no mismatches found OFF OFF OFF
Failed – mismatches found ON ON ON

The memory test will run repeatedly as long as
pushbutton SW2 on the XSA Board is pressed. You
should see that the S4-S5 LEDs flash more quickly
than the S1-S2 LEDs. Because port 1 is allocated
more time slots than port 0, the upper half of memory
can be tested in less time so the associated LEDs
flash more quickly than those for the lower half.

The dualport memory tester for the XSB Board does
not provide as much visual feedback. Once the
memory tester application is compiled and
downloaded into the XSB Board, you should see the
LEDs glow and then either display “OO” (if the
dualport SDRAM test completed without errors) or
“EE” (if an error occurred).

July 12, 2005 (Version 1.0) 2

Dualport Module

Allocating SDRAM Bandwidth to Ports

The PORT_TIME_SLOTS generic parameter is used
to allocate the SDRAM bandwidth between the ports
of the dualport module. PORT_TIME_SLOTS is a
16-bit std_logic_vector where each bit corresponds to
a time slot during which a read or write of the
SDRAM can occur. Setting a bit to zero assigns the
time slot to port 0, and setting it to one assigns the
time slot to port 1. For example, the generic
parameter assignment

PORT_TIME_SLOTS => “1111000011110000”

assigns eight time slots to each port, with each port
getting four contiguous accesses to the SDRAM
before the dualport module switches control to the
other port. Hence, each port is allocated half the
bandwidth of the SDRAM.

The PORT_TIME_SLOTS parameter only affects the
operation of the dualport module when applications
on both ports try to simultaneously access the
SDRAM. An application will get immediate access to
the SDRAM on its port if no read or write operation is
in progress on the other port. So the assignment

PORT_TIME_SLOTS => “1111111111111111”

allows port 0 to access the SDRAM only when port 1
is not accessing it, but it does not completely block
port 0 from ever accessing the SDRAM.

The grouping of bits in the PORT_TIME_SLOTS
parameter affects the efficiency and responsiveness
of the dualport module. The assignment

PORT_TIME_SLOTS => “1111111100000000”

assigns half the SDRAM bandwidth to each port but
may block a port’s access to the SDRAM for up to
eight time slots while the other port has priority. To
reduce this delay, the assignment

PORT_TIME_SLOTS => “0101010101010101”

alternates access to the SDRAM between the ports
but wastes time because the SDRAM controller
pipeline must be cleared before each switch. The
appropriate grouping of bits is application-specific,
but using contiguous groups is generally best.

Expanding the Number of Ports

It is easy to create multi-port SDRAM interfaces just
by cascading a number of dualport modules as
shown in Figure 3. Be aware that going through the
dualport module can increase propagation delays in
your application and may decrease its maximum
clock frequency.

July 12, 2005 (Version 1.0) 3

rst

hDOut

DCAS

clk2x

DQMH

clk1x

DA

bufclk

DBA

rd

DCKE

rdDone
done
rdPending
opBegun
earlyOpBegun DWE

hDIn

DRAS

hAddr

DCS

wr

DQ

lock

DQML

status

clkclk

global
clock
inputs

DCLK

SDRAM

FPGA Oscillator

XSASDRAMCntl
dualport

Host Side SDRAM Side

FPGA
App. 1

FPGA
App. 0

sclkfb

sAddr

dqml
dqmh

ba

sData

we_n
cas_n
ras_n
cs_n

cke
sclk

rst

hDOut

rd

rdDone
done

rdPending
opBegun

earlyOpBegun

hDIn
hAddr

wr

status

rst0

hDOut0

rdDone0
done0
rdPending0
opBegun0

hDIn0
hAddr0

wr0

status0

rst1

hDOut1

rdDone1
done1
rdPending1
opBegun1

hDIn1
hAddr1

wr1

status1

Figure 1: Dualport interface to the XSA Board SDRAM controller.

July 12, 2005 (Version 1.0) 4

Dualport Module

rst

hDOut

DCAS

DQMH

DA

lock1

DBA

rd

DCKE

rdDone
done
rdPending
opBegun
earlyOpBegun DWE

hDIn

DRAS

hAddr

DCS

wr

DQ

DQMLstatus

clkclk

global
clock
input

DCLK

SDRAM

FPGA Oscillator

sdramCntl
dualport

Host Side SDRAM Side

FPGA
App. 1

FPGA
App. 0

sAddr

SDOutEn

dqml

SDOut

dqmh

ba

SDIn

we_n
cas_n
ras_n
cs_n

cke

rst

hDOut

rd

rdDone
done

rdPending
opBegun

earlyOpBegun

hDIn
hAddr

wr

status

rst0

hDOut0

rdDone0
done0
rdPending0
opBegun0

hDIn0
hAddr0

wr0

status0

rst1

hDOut1

rdDone1
done1
rdPending1
opBegun1

hDIn1
hAddr1

wr1

status1

Figure 2: Dualport interface to the XSB Board SDRAM controller.

sdramCntldualport

dualport

sdramCntldualport

dualport

dualport

Figure 3: Building three-port and four-port SDRAM interfaces by cascading dualport modules.

July 12, 2005 (Version 1.0) 5

Dualport Module

Revision Date Comments
1.0 07/12/05 Initial version.

July 12, 2005 (Version 1.0) 6

	Dualport Module for the SDRAM Controller
	Summary
	Dualport Features
	Dualport Interface
	Generic Parameters
	I/O Ports

	Dualport Application
	Allocating SDRAM Bandwidth to Ports
	Expanding the Number of Ports
	Figure 1: Dualport interface to the XSA Board SDRAM controller.
	Figure 2: Dualport interface to the XSB Board SDRAM controller.
	Figure 3: Building three-port and four-port SDRAM interfaces by cascading dualport modules.

